

"Evolution or Revolution" The organization of the electricity system after 2040

Presentation for the IASS workshop"The Organization of Electricity – a Multi-perspective Inquiry"

Uwe Leprich
Institute for Future Energy Systems (IZES)
Potsdam, January 8, 2015

- 1 Future technical developments
- 2 Key drivers of past developments
- 3 The development of system roles
- The transnational perspective in Europe
- 5 Prospects

Future technical developments: evolution!

Renewable energies

- Wind on- and offshore power plants
- Photovoltaics
 will continue to become even cheaper

Backups / Flexibilities

- Conventional power plants
- Cogeneration / CHP plants
- Demand-side applications will continue to become more flexible

Networks

- High temperature conductors
- Controllable transformer stations
- Cable solutions
 will contribute to more flexible
 network solutions

Electricity efficiency

- Motors
- Appliances
- ICT

will continue to become more efficient

Future technical developments: revolution?

Renewable Energies

- Biocoal
- Wave power plants
- Energy harvesting will play no mayor role in the foreseeable future

Storages

- Controllable batteries in electrical vehicles
- Power-to-methane
- Large hydraulic storages will play no mayor role in the foreseeable future

Networks

- Microgrids
- Superconductors
- Wireless electricity transport will play no mayor or no role in the foreseeable future

Joker

- Small CHP nuclear reactors
- Nuclear fusion reactors
- Algae

Nobody should bet on them!

- The technical developments in the electricity sector will at least in the next decades mainly be improvements of existing technologies and their combinations
- The flexibilities both on the supply and the demand side will significantly improve due to the rationale of the variable renewable energies; ICT will be the key to ensure this development
- Even an unexpected breakthrough of a new technology would not change the character of the new electricity system based on variable renewable energies and flexibilities

- 1 Future technical developments
- 2 Key drivers of past developments
- The development of system roles
- The transnational perspective in Europe
- 5 Prospects

Key drivers of past developments: shocks/revolution!

Oil price crises in the 70s

Tschernobyl / Fukushima

Global Warming

Liberalization of the electricity sector

Key drivers of past developments: evolution

CO₂ reduction targets

Renewable targets

Energy efficiency standards

Closedown schedules for nuclear power plants

- The past developments in the electricity sector have been heavily influenced by external shocks.
- The political answer to these shocks have been targets, roadmaps and legal measures.
- The developments after the shocks have usually not been linear; sometimes the targets and measures have been given up.

- 1 Future technical developments
- 2 Key drivers of past developments
- 3 The development of system roles
- The transnational perspective in Europe
- 5 Prospects

The development of system roles: evolution!

Generators

- face investment risks
- minimize OPEX
- improve flexibility of their assets

to maximize their market chances

TSOs

- enable/facilitate markets
- ensure cross-border trading
- strengthen the cooperation with the DSOs in order to guarantee security of supply

DSOs

- have more cost awareness through incentive regulation
- have decentralized plants as new network customers
- make their networks "smarter"

Suppliers/Retailers

- differentiate their products
- offer more services
- market renewable energies

The development of system roles: post-liberal revolution?

Generation

 Wind Onshore, PV and nonindustrial cogeneration is treated as public infrastructure and financed through charges

TSOs

 guarantee security of supply through own backup capacities

DSOs

 optimize their networks through direct access to customer appliances and decentralized plants

Suppliers/Retailers

 integrate their share of the variable renewable energies into their portfolios / "residual load approach"

- Liberalization is not the end of the story; the renewable paradigm might require new system roles which could differ from the market roles in the liberalization paradigm.
- The room for markets will shrink in the new electricity system; a major part of it will be infrastructure.
- Small and medium-sized public and private entities will dominate the system.

- 1 Future technical developments
- 2 Key drivers of past developments
- 3 The development of system roles
- The transnational perspective in Europe
- 5 Prospects

The transnational perspective: evolution?

Technical Options

- Norway as a European **battery**
- Northsea as Europe's green **Power House**
- **Mediterranean Solar Region**

The European Union

- as infrastructure provider
- as facilitator of large cooperation projects between countries in and outside the EU

National Governments

willing to cooperate regionally in terms of security of supply and renewable remuneration schemes

The People

- willing to accept a mix of centralized and decentralized options
- not heading for autonomy or even autarky

The transnational perspective: revolution??

- The perspective of transnational cooperation in the electricity sectors in Europe will be tied to the existence and the perspective of the European Union itself
- If the EU continues to exist there could be a tendency for a closer regional cooperation

Prospects

- A linear development to a sustainable electricity system might be not be very likely; external shocks might be necessary to overcome path dependencies
- Variable renewable energies (VRES) will dominate the system sooner or later
- A broad range of backup capabilities for the VRES will be determined both politically and by market forces
- The future electricity system based on VRES will more be seen as an infrastructure for the industrial society than a system characterized by commodity markets

Thank you very much for your attention!

Institut für ZukunftsEnergieSysteme (IZES)

Altenkesselerstr. 17, Gebäude A1

66115 Saarbrücken

Tel. 0681 – 9762 840

Fax 0681 - 9762 850

email: leprich@izes.de

Homepage www.izes.de

Uwe Leprich

- Professor at the business school of the University of Applied Sciences in Saarbruecken since 1995
- At the same time scientific head of the Institute for Future Energy Systems (IZES), a university based research institute focussing on renewable energies, energy efficiency and decentralised power generation
- Author and co-author of several books and articles liberalised electricity markets, feed-in law regulations and instruments for promoting renewable energies in the heat market.
- Chairman of the Energiebeirat of the state of Rheinland-Pfalz
- Alternate member of the Administrative Board of ACER (Agency for the cooperation of Energy Regulators)

