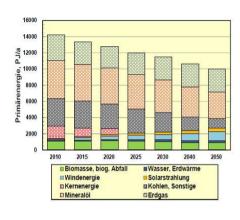
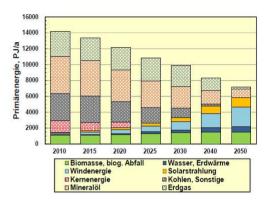
Für Mensch & Umwelt

Impuls zum Strategischen Beirat IKEM

"Wie sollte sich die Gaswirtschaft auf die Energiewende einstellen?"


Prof. Dr. Uwe Leprich Abteilungsleiter Klimaschutz und Energie

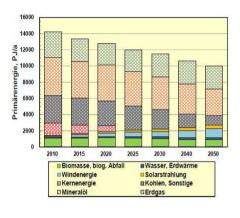

Stolpe, 27. Juni 2016

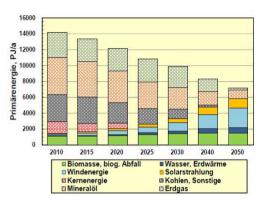
Energiewende in der Perspektive

Quellen: Nitsch 2016

Energiewende in der Perspektive

Primärenergieverbrauch


Abbildung 15: Umbaudynamik der Energieversorgung (am Beispiel der Entwicklung des Primärenergieverbrauchs) unter gegenwärtigen Trendentwicklungen (Szenario SZEN-16 "TREND", links) und die aus Klimaschutzsicht mindestens notwendigen Entwicklungsgradienten (SZEN-16 "KLIMA 2050", rechts). Der verbleibende fossile Beitrag enthält auch den nichtenergetischen Einsatz (in SZEN-16 "KLIMA2050" beträgt er in 2050 rund 70%).


Tabelle B2: Primärenergieeinsatz von Erdgas, Kohlen und Mineralöl

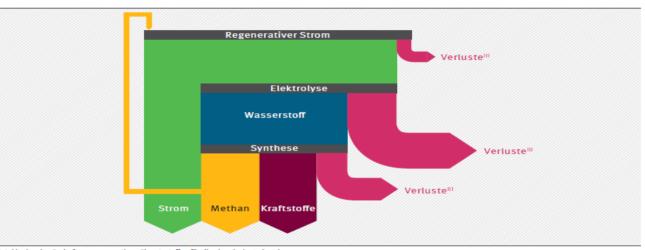
Trend

Erdgaseinsatz, PJ/a	2010	2015	2020	2025	2030	2035	2040	2045	2050
Kond. Kraftwerke	320	134	54	99	135	162	190	222	253
Kraft-Wärme-Kopplung	709	586	567	601	678	670	662	630	610
Raumheizung, WW	1240	1130	1070	1025	1040	1015	990	96	930
Prozesswärme	700	750	700	700	720	735	750	74	730
Kraftstoffe	25	30	35	40	50	60	70	7!	80
NE-Verwendung	62	69	99	98	97	96	95	94	93
Verluste	115	105	103	104	109	108	108	107	106
Primärenergieeinsatz	3171	2804	2628	2668	2829	2847	2864	2833	2802

Energiewende in der Perspektive

Primärenergieverbrauch

Abbildung 15: Umbaudynamik der Energieversorgung (am Beispiel der Entwicklung des Primärenergieverbrauchs) unter gegenwärtigen Trendentwicklungen (Szenario SZEN-16 "TREND", links) und die aus Klimaschutzsicht mindestens notwendigen Entwicklungsgradienten (SZEN-16 "KLIMA 2050", rechts). Der verbleibende fossile Beitrag enthält auch den nichtenergetischen Einsatz (in SZEN-16 "KLIMA2050" beträgt er in 2050 rund 70%).


Erdgaseinsatz, PJ/a	2010	2015	2020	2025	2030	2035	2040	2045	2050
Kond. Kraftwerke	320	134	201	341	449	403	357	199	40
Kraft-Wärme-Kopplung	709	586	631	672	644	503	361	181	
Raumheizung, WW	1240	1130	1050	900	680	418	155	78	
Prozesswärme	700	750	730	700	650	575	500	268	3
Kraftstoffe	25	30	40	45	50	53	55	60	6
NE-Verwendung	62	69	99	98	97	96	95	94	9:
Verluste	115	105	112	116	113	95	76	56	3

Klima 2015

Quellen: Nitsch 201

Treibhausgasneutrales Deutschland

Qualitative Darstellung des Energieflusses im UBA THGN D 2050 Szenario^{I,II}

Ouelle: Umweltbundesamt, 2013

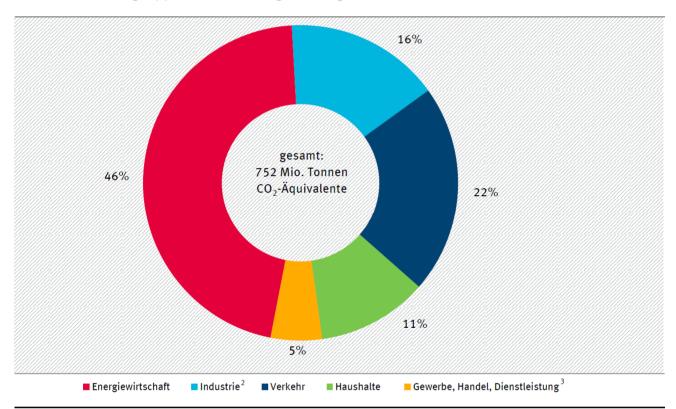
I Inklusive des Bedarfs an regenerativen Einsatzstoffen für die chemische Industrie.

II Die Darstellungen der Energieströme sind proportional zu den notwendigen Energieströmen.

III einschließlich Leitungsverluste, der Verluste aus der Methan-Rückverstromung und der Verluste der Biomassenutzung und Strombereitsstellung)

Basis: rund 3.000 TWh Nettostromerzeugung

Tabelle B-14: Gesamter Endenergieverbrauch im UBA THGND 2050 – Szenario


	Strom in TWh	regeneratives Methan in TWh	flüssige regenerative Kraftstoffe in TWh
private Haushalte	104,7	44,5	0
GHD	90,3	62,4	18,6
Industrie LXXXIX, XC	179,7	198,8	0
Verkehr	91,1	0	533,3
Summe energetisch	465,8	305,7	551,9
		1323,4	
Industrie stofflich		282	
Summe energetisch und stofflich		1605,4	

Treibhausgasneutrales Deutschland

Umwelt
Bundesamt

Warum ist der Stromsektor so wichtig?

Anteile der Quellgruppen an den energiebedingten THG-Emissionen¹ im Jahr 2014

Angaben ohne diffuse Emissionen bei der Gewinnung, Umwandlung und Verteilung von Brennstoffen. 1 in CO₂-Äquivalenten, berücksichtigt CO₂, CH₄, N₂O

2 enthält nur Emissionen aus Industriefeuerungen, keine Prozessemissionen

3 einschließlich Militär und Landwirtschaft (energiebedingt)

Quelle: Umweltbundesamt: Nationale Trendtabellen für die deutsche Berichterstattung atmosphärischer Emissionen 1990-2014, Stand Januar 2016

Perspektivisch wachsen Strom-, Wärmeund Verkehrssystem stärker zusammen

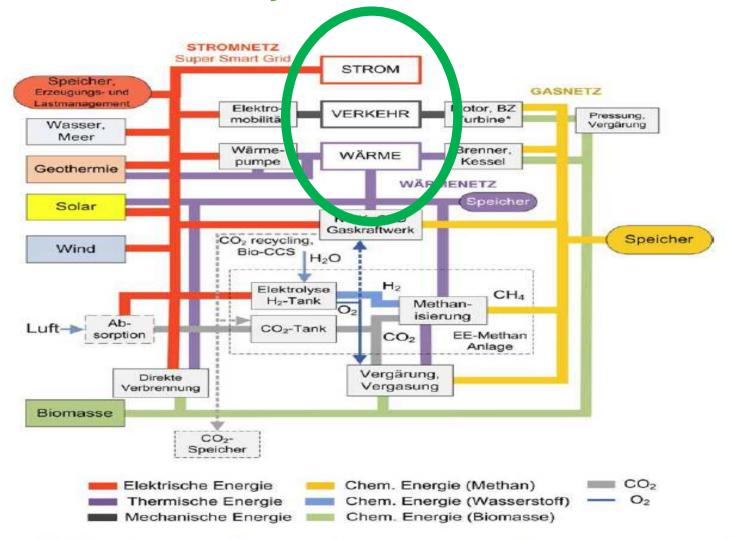
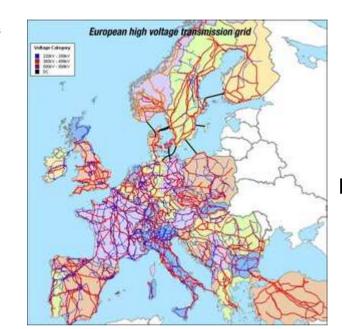


Abbildung 3.17: Struktur einer zukünftigen Energieversorgung mit erneuerbaren Energien auf Basis gekoppelter Strom-, Gas- und Wärmenetze mit EE-Methan als chemischem Energieträger und Langzeitspeicher, angelehnt an [Sterner 2009]

Die Schlüsselfrage der weiteren
Transformation der
Energiesysteme: Welche
Systemgrenzen werden
politisch favorisiert?

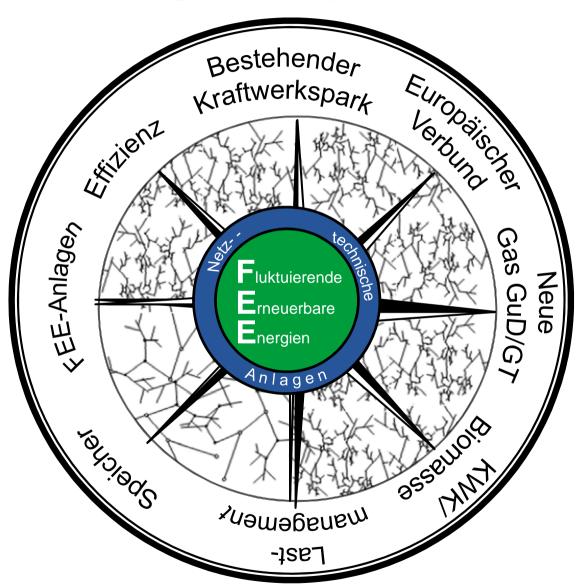
Energiewende und Energiesysteme: zentral oder dezentral?

WIRTSCHAFT MEGAPROJEKT


China plant ein Stromnetz für die ganze Welt

Liu sprach vom Ausbau großer
Windkraftkapazitäten am Nordpol, die mit
Solarparks rund um den Äquator verbunden
werden sollten. Grundlage für das Netz sei
die Ultrahochspannungstechnik (UHV), mit
der China bereits seit rund zehn Jahren
Erfahrungen sammle. Dabei werden 800.000
Volt über Gleichstromkabel oder bis zu 1,1
Millionen Volt über Wechselstromsysteme
geleitet.

Foto: Infografik Die Welt

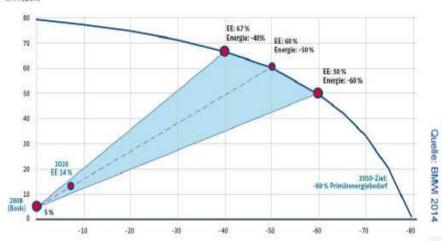

Europäische Kupferplatte?

Erdgas als Systembeitrag

a) Erdgas in derStromerzeugung

Das künftige Stromsystem

Quelle: IZES 2012


Perspektive Versorgungssicherheit

- Kein Wirtschaftsminister in Deutschland wird sich bei der Versorgungssicherheit allein auf den Markt verlassen
- ► Auf Dauer wird an verlässlichen Zahlungsströmen für Leistungsvorhaltung kein Weg vorbeiführen
- ▶ Die davon profitierenden Kapazitäten werden aller Voraussicht nach weniger wettbewerblich bestimmt, sondern politisch (z.B. KWK, Speicher, Lastmanagement, ...)
- ► Kohlekraftwerke sind in D ein Auslaufmodell, Erdgaskraftwerke sind politisch und gesellschaftlich akzeptiert
- ► Ein grenzüberschreitender Ansatz zur Sicherung der Versorgung ist realpolitisch noch Zukunftsmusik

b) Erdgas in der Raumwärme

Plan B jenseits der Passivhauswelt notwendig!

Abbildung 6: (möglicher) Zielkorridor aus Energieeinsparung und Erhöhung des EE-Anteils von 2008 bis 2050 in Prozent

Regenerative Wärmeversorgung

Power to Heat

regenerative Gase als Brennstoff

Power to Gas

Beispiel Verbrennungsprozesse, insbesondere dort, wo eine C-Quelle nötig Flektroheizer

Beispiel
Elektrokessel in
Fernwärmenetzen,
Elektroschmelzöfen,
Elektroheizer für Prozesswärme in Industrie

indirekt

Wärmepumpe

Beispiel
zur Raumwärmeversorgung in Gebäuden,
zur Bereitstellung von
Niedertemperaturwärme
in GHD und Industrie

O., II., II., 18., 14., 17.

15

Quelle: BMWi 2014; UBA 2015

Chancen und Herausforderungen Sektorkopplung: Kraft-Wärme-Kopplung

KWK

- als Gas- und Bioenergie-KWK
- flexibel
- dezentral
- vernetzt
- tendenziell strom-/marktorientiert

ist systemisch gesehen eine gute Ergänzung der fluktuierenden erneuerbaren Energien, solange wir nicht auf die Zielgerade zum 100% EE-System einbiegen

Sie bleibt ein Stiefkind, wenn auch mittelfristig die (Braun-) Kohlekraftwerke im System verbleiben sollen

KWK in virtuellen Kraftwerken?

"Ein virtuelles Kraftwerk ist eine Zusammenschaltung von kleinen, dezentralen Kraftwerken, wie zum Beispiel Windenergieanlagen, Blockheizkraftwerken, Photovoltaikanlagen, Kleinwasserkraftwerken und Biogasanlagen sowie auch von abschaltbaren Lasten zu einem Verbund. Die Anlagen werden gemeinsam von einer zentralen Warte aus gesteuert." (Definition nach RWE)

<u>Vermarktungsmöglichkeiten</u>

- ► Regelenergiemärkte
- Intraday
- künftig evtl. Sektorkopplung
- künftig evtl. Bilanzkreisausgleich
- künftig evtl. Netzlastmanagement

KWK in virtuellen Kraftwerken?

Barrieren für VK

- ► Präqualifikationsbedingungen für die Regelenergiemärkte
- wenige Geschäftsmodelle für Sektorkopplung
- geringe Anreize für Bilanzkreisausgleich
- geringe Anreize für dezentrale Netzoptimierung

Je mehr Marktzutrittsbarrieren abgebaut werden, desto mehr Chancen für KWK-Anlagen. Voraussetzung dafür wäre die politische Unterstützung dezentraler Systeme.

18

Flexibilisierung der KWK

Entwurf Novellierung EnWG, Juni 2016

§ 13 wird wie folgt geändert:

a) Nach Absatz 6 folgender Absatz 6a eingefügt:

"(6a) Die Betreiber von Übertragungsnetzen können mit Betreibern von KWK-Anlagen vertragliche Vereinbarungen zur Reduzierung der Wirkleistungseinspeisung aus der KWK-Anlage und gleichzeitigen Lieferung von elektrischer Energie für die Aufrechterhaltung der Wärmeversorgung nach Absatz 1 Nummer 2 und Absatz 3 Satz 2 schließen, wenn die KWK-Anlage

- technisch unter Berücksichtigung ihrer Größe und Lage im Netz geeignet ist, zur Beseitigung von Gefährdungen oder Störungen der Sicherheit oder Zuverlässigkeit des Elektrizitätsversorgungssystems aufgrund von Netzengpässen im Höchstspannungsnetz effizient beizutragen,
- 2. vor dem 1. Januar 2017 in Betrieb genommen worden ist und
- 3. eine installierte elektrische Leistung von mehr als 500 Kilowatt hat.

In der vertraglichen Vereinbarung nach Satz 1 ist zu regeln, dass

- die Reduzierung der Wirkleistungseinspeisung und die Lieferung von elektrischer Energie zum Zweck der Aufrechterhaltung der Wärmeversorgung abweichend von § 3 Absatz 2 des Kraft-Wärme-Koppelungsgesetzes und den §§ 14 und 15 des Erneuerbare-Energien-Gesetzes eine Maßnahme nach Absatz 1 Nummer 2 ist, die gegenüber den übrigen Maßnahmen nach Absatz 1 Nummer 2 nachrangig durchzuführen ist,
- für die Reduzierung der Wirkleistungseinspeisung vom Übertragungsnetzbetreiber eine angemessene Vergütung zu zahlen ist und die Kosten für die

Lieferung der elektrischen Energie zu erstatten sind; § 13a Absatz 2 bis 4 ist entsprechend anzuwenden, und

 die erforderlichen Kosten für die Investition für die elektrische Wärmeerzeugung vom Betreiber des Übertragungsnetzes einmalig erstattet werden.

Die Betreiber der Übertragungsnetze müssen sich bei der Auswahl der KWK-Anlagen, mit denen vertragliche Vereinbarungen nach den Sätzen 1 und 2 geschlossen werden, auf die KWK-Anlagen beschränken, die kostengünstig und effizient zur Beseitigung des Netzengpasses beitragen können. Die vertragliche Vereinbarung muss mindestens für fünf Jahre abgeschlossen werden und ist mindestens vier Wochen vor dem Abschluss der Bundesnetzagentur und spätestens vier Wochen nach dem Abschluss den anderen Übertragungsnetzbetreibern zu übermitteln. Die installierte elektrische Leistung von Wärmeerzeugern, die aufgrund einer vertraglichen Vereinbarung mit den KWK-Anlagen nach den Sätzen 1 und 2 installiert wird, darf 2 Gigawatt nicht überschreiten."

Flexibilisierung der KWK

Entwurf Novellierung EnWG, Juni 2016

- ➤ Die Maßnahme verringert effektiv die Abregelung erneuerbarer Energien und führt den Strom einer sinnvollen Nutzung zu. Sie hat beim Redispatch eine doppelte Entlastungswirkung im Stromnetz, da elektrische Wärmeerzeuger den Strombezug erhöhen und die KWK-Anlagen ihre Stromerzeugung verringern.
- ➤ Die Maßnahme erleichtert den ÜNB das Netzengpassmanagement und erhöht die Sicherheit des Systems. Durch die Maßnahme können nun auch KWK-Anlagen im Redispatch ihre Stromerzeugung anpassen. Dadurch stehen den ÜNB mehr Redispatch-Potentiale zur Verfügung, so dass sie weniger ultima ratio-Maßnahmen nach § 13 Absatz 2 EnWG nutzen müssen.

Fazit und Ausblick (Kurz- und mittelfristige Perspektive)

- Gas-GuD-Kraftwerke und Gasturbinen werden als Backup-Kraftwerke zur Sicherung der Versorgung politisch unterstützt
- Kraft-Wärme-(Kälte-)Kopplung wird als flexible Flankierungsoption der fluktuierenden erneuerbaren Energien politisch unterstützt
- Gas im Heizungsbereich: als Erdgas politisch ein Auslaufmodell, als PtG möglicherweise ein Zukunftsmodell (Infrastrukturerhalt!)

Vielen Dank für Ihre Aufmerksamkeit

uwe.leprich@uba.de www.uba.de

Tel. +49 (0)340-2103-2081

Mobil +49 (0)172 9980735

