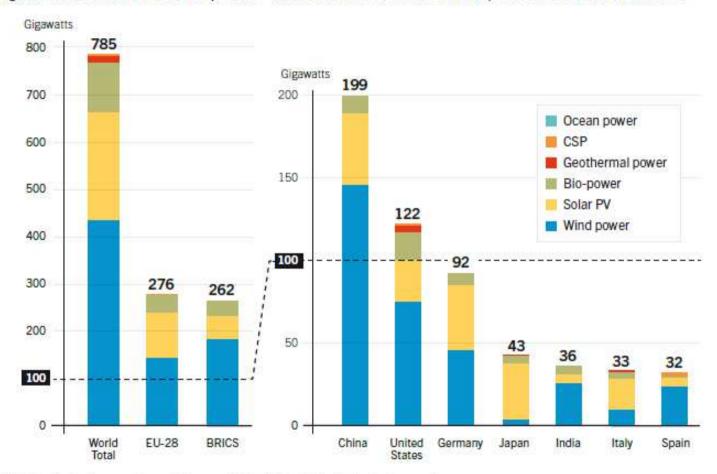
"Globale, europäische und nationale Entwicklungen der Energiepolitik – hat die Energiewende aktuell eine Chance?"

Vortrag im Rahmen des 17. Schönauer Strom Seminars "Bürgerenergiewende – jetzt erst recht!"

Schönau, den 2. Juli 2016

Uwe Leprich

a) Energiewende global?


EE-Status global in 2015

		2014	2015
INVESTMENT			
New investment (annual) in renewable power and fuels ¹	billion USD	273	285.9
POWER			
Renewable power capacity (total, not including hydro)	GW	665	785
Renewable power capacity (total, including hydro)	GW	1,701	1,849
	GW	1,036	1,064
☐ Bio-power capacity³	GW	101	106
Dio-power generation (annual)	TWh	429	464
in Geothermal power capacity	GW	12.9	13.2
Solar PV capacity	GW	177	227
Concentrating solar thermal power capacity	GW	4.3	4.8
■ Wind power capacity	GW	370	433

Atomenergie: 404 GW

EE-Status global in 2015

Figure 4. Renewable Power Capacities* in World, EU-28, BRICS and Top Seven Countries, End-2015

^{*} Not including hydropower (> see Reference Table R2 for data including hydropower).

The five BRICS countries are Brazil, the Russian Federation, India, China and South Africa.

Die Entwicklung der Windenergie

Figure 23. Wind Power Global Capacity and Annual Additions, 2005–2015

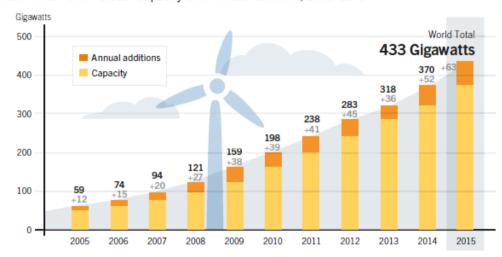
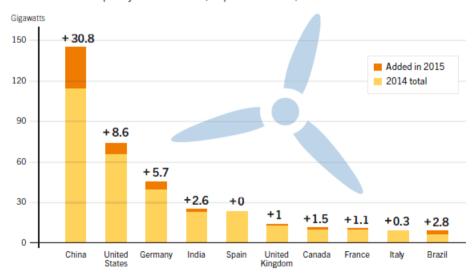



Figure 24. Wind Power Capacity and Additions, Top 10 Countries, 2015

Die Entwicklung der Photovoltaik

Figure 14. Solar PV Global Capacity and Annual Additions, 2005-2015

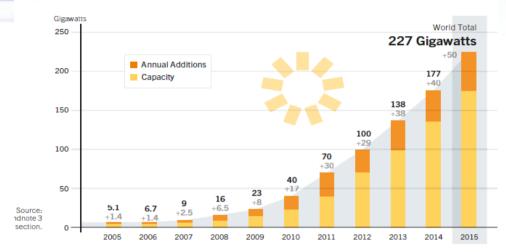
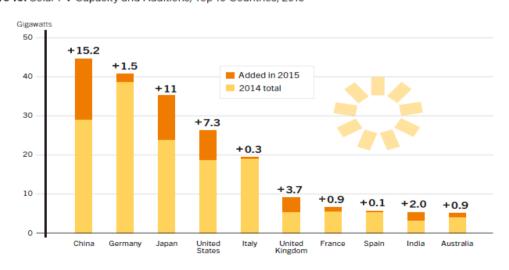
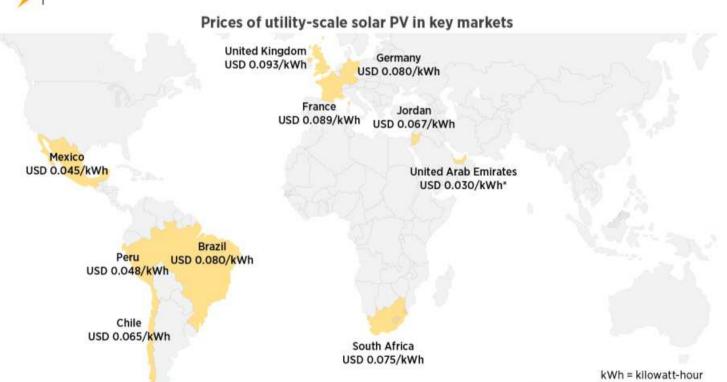



Figure 16. Solar PV Capacity and Additions, Top 10 Countries, 2015

Die Kostenrevolution bei der **Photovoltaik**



Quelle: IRENA 2016

Die Kostenrevolution bei der **Photovoltaik**

* Bid price (rounded up from USD 0.0299/kWh; winning bid still undetermined at time of publication)

Energiewende global?

- Der Zubau von Wind-und PV-Anlagen weltweit ist extrem dynamisch
- Gleichwohl steht er erst am Anfang, da bislang nur wenige Länder engagiert sind
- Die Kostenentwicklung vor allem bei PV, aber auch bei Wind ist spektakulär; dieser Entwicklung wird jeder Investor im Energiesektor Rechnung tragen müssen
- Das Signal von Paris hat Wirkung für die Entwicklungsrichtung der Energiesysteme weltweit: Dekarbonisierung!
- Wind- und PV-Anlagen werden global das Herzstück der Dekarbonisierung; mit ihnen verbunden ist eine umfassende Transformation der Energiesysteme

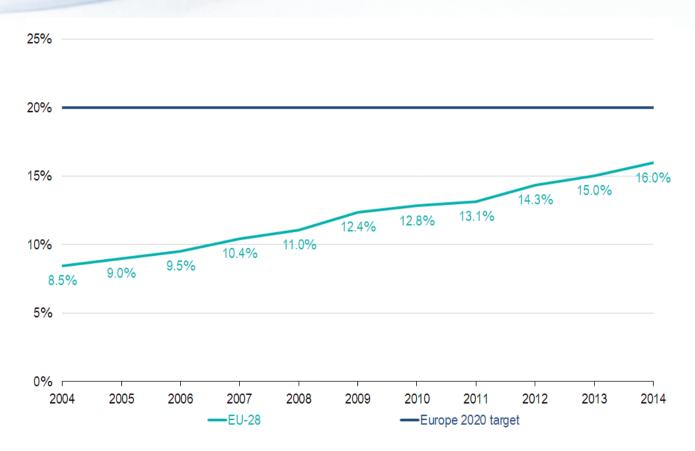
b) Energiewende EU?

Ziele der EU bis 2020 (2030)

- 40%

20% Energieeinsparung im Vergleich zum Szenario "Business as usual"

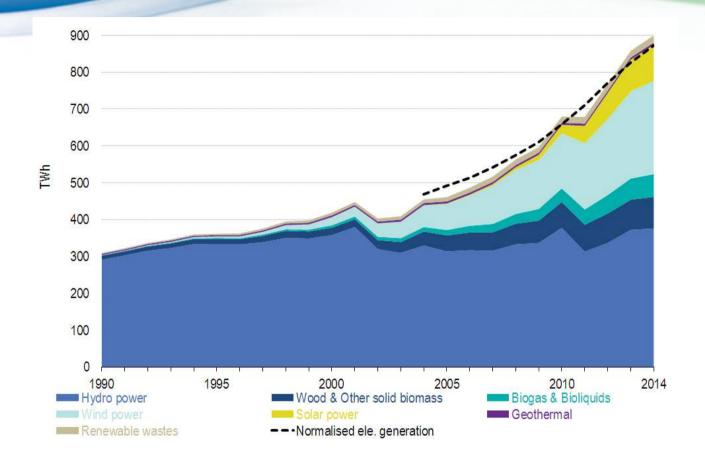
27%


20% CO₂-Reduktion im Vergleich zu 1990 **27%**

20% Anteil erneuerbarer Energien an Primärenergie

Beschluss des Europäischen Rates im März 2007 Beschluss des Europäischen Rates im Oktober 2014

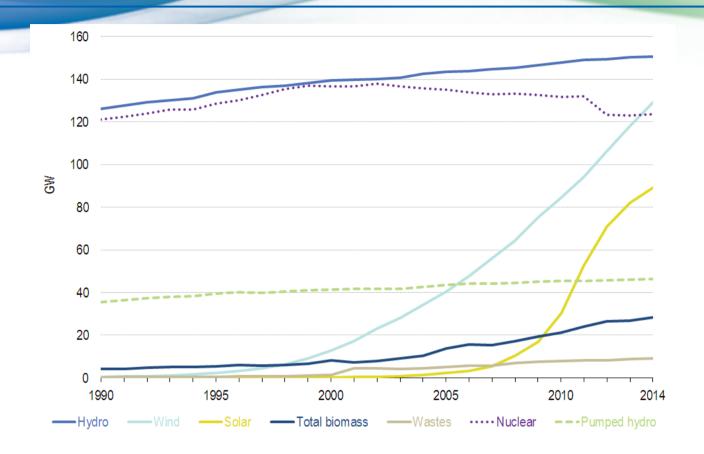
Quelle: EUROSTAT 2016


EE als Anteil am Endenergieverbrauch in der EU-28

Share of energy from renewable sources in gross final consumption of energy, EU-28, 2004-2014

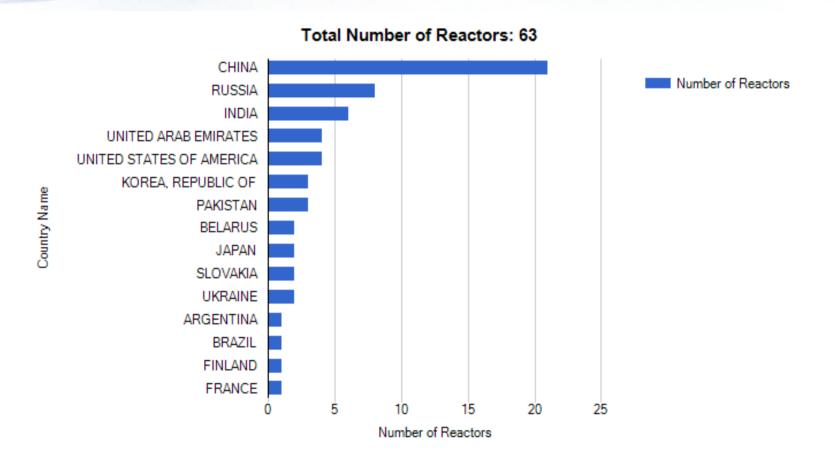
Quelle: EUROSTAT 2016

Erneuerbare Stromerzeugung in der EU-28



RENEWABLES-EU28-ELECTRICITY-PRODUCTION-2014

Die Europäischen EE-Ziele und Zwischenstand 2012


	EE-Anteile am Bruttoendenergieverbrauch (%)						
	2007	2008	2009	2010	2011	2012	Ziel
Belgien	3.0	3.3	4.6	5.0	5,2	6.8	13
Bulgarien	9,4	10,7	12,4	14,4	14,6	16,3	16
Dänemark	17,9	18,6	20,4	22,6	24,0		
Deutschland	9,0	8,5	9,9	10,7	11,6	12,4	18
Estland	17,1	18,9	23,0	24,6	25,6	25,8	25
Finnland	29,8	31,3	31,2	32,4	32,7	34.3	38
Frankreich	10,2	11,2	12,2	12,7	11,3	13,4	23
Griechenland ²	8,2	8,0	8,5	9,8	10,9	250	
Irland	3,6	4,0	5,2	5,6	6,6	7,2	16
Italien	6,5	7,4	9,3	10,6	12,3	13,5	17
Kroatien	12,1	12,1	13,1	14,3	15,4	16,8	20
Lettland ²	29,6	29,8	34,3	32,5	33,5	35,8	40
Litauen	16,7	18,0	20,0	19,8	20,2	21,7	23
Luxemburg	2,7	2,8	2,9	2,9	2,9	3,1	11
Malta ²	0,4	0,4	0,4	0,4	0,7	1,4	10
Niederlande	3,1	3,4	4,1	3,7	4,3	4,5	14
Österreich	27,5	28,3	30,4	30,8	30,8	32,1	34
Polen	7,0	7,8	8,8	9,3	10,4	11,0	15
Portugal	21,9	22,9	24,5	24,2	24,5	24,6	31
Rumänien	18,3	20,4	22,6	23,2	21,2	22,9	24
Schweden	44,1	45,2	48,2	47,2	48,8	51,0	49
Slowakei	7,3	7,5	9,3	9,0	10,3	10,4	14
Slowenien	15,6	15,0	18,9	19,2	19,4	20,2	25
Spanien	9,7	10,8	13,0	13,8	13,2	14,3	20
Tschechische Republik	7,4	7,6	8,5	9,3	9,3	11,2	13
Ungarn ²	5,9	6,5	8,0	8,6	9,1	9,6	13
Vereinigtes Königreich	1,8	2,4	3,0	3,3	3,8	4,2	15
Zypern	4,0	5,1	5,6	6,0	6,0	6,8	13

Erneuerbare Stromkapazitäten in der EU-28

EU28-NONFOSSIL-ELECTRICAL-CAPACITY-2014

Atomenergie in der EU: keine Perspektive

Quelle: IAEA 2016

Stand 28. Juni 2016

EU-Maßnahmen 2016

Maßnahme ¹¹	Zeit- plan ¹²	Motivation
Gas		
"Energiesicherheitspaket" Teil 1: Überarbeitung der Verordnung über die Sicherheit der Erdgasver- sorgung	Feb- ruar	Diversifizierung der Gas- versorgung, Erhöhen der Widerstandsfähigkeit gegen Störungen.
"Energiesicherheitspaket" Teil 2: Strategie für Flüssi- gerdgas und dessen Spei- cherung	Feb- ruar	Diversifizierung der Gas- versorgung, Erhöhen der Widerstandsfähigkeit gegen Störungen.
Wärme- und Kälteerzeu- gung		
"Energiesicherheitspaket" Teil 3: Strategie für die Wärme- und Kälteerzeu- gung	Feb- ruar	Beitrag der Wärme- und Kälteerzeugung zur Ver- wirklichung der EU-Ener- gie- und Klimaziele.
Klima		
Legislativvorschlag zur Überarbeitung des EU- Emissionshandelssystems, 2021-2030	bereits vorge- legt	Umsetzung des Klima- und Energierahmen 2030.
"Sommerpaket zu Klima- zielen": Vorschlag zur Las- tenteilung für nicht unter das EH EHS fallende Berei- che wie Gebäude, Land- wirtschaft und Verkehr.	Som- mer	Sicherstellung, dass die EU als einer der Hauptakteure bei der Pariser Klimakonfe- renz ihre Zielvorgaben erfüllt.

Energieeffizienz (Paket)		53
Legislativvorschläge zur Revision der EU-Energieef- fizienz-Richtlinie	2. Halb- hr	Erreichen des Effizienzzie- les von mind. 27% Energie- einsparung bis 2030.
Überprüfung der RL über die Gesamtenergieeffizienz von Gebäuden	I üh- jahr	Erreichen des Effizienzzie- les von mind. 27% Energie einsparung bis 2030.
Überprüfung der RL über Energieverbrauchskenn- zeichnung und Ökodesign RL	De- zem- ber	Erreichen des Effizienzzie- les von mind. 27% Energie einsparung bis 2030.
In struktur		194 405
Mitteilung zur Erfüllung des Strom-verbundzieles von 15% bis 2030		Verwirklichung des Strom binnenmarktes.
Strom		
"Herbst-Paket" Teil 1: Legislativvorschläge zur Neugestaltung des Elektri- zitätsmarktes und des Regelungsrahmens	3./4. Quar- tal	Überprüfung des Marktde signs hinsichtlich der uneinheitlichen Entwick- lung der Kapazitätsmecha- nismen und Integration de erneuerbaren Energien.
"Herbst-Paket" Teil 2: Überarbeitung der Richtli- nie über die Sicherheit der Elektrizitätsversorgung	3./4. Quar- tal	Stärkung der Versorgungs sicherheit für Strom und besseres Management die- ser Sicherheit auf EU- Ebene.
Erneuerbare Energien (Paket)		
"Herbst-Paket" Teil 3: Neue Richtlinie über Erneuerbare Energien mit Zielvorgaben für 2030	3 / 4. Quar- al	Steigern des Anteils Erneu erbare Energien bis 2030 auf 27%.

Energiewende in der EU?

- Die EU-Energiepolitik ist nach wie vor stark geprägt von der Agenda der Liberalisierung und des einheitlichen europäischen Binnenmarktes.
- Mit der Beihilfe-Leitlinie der Generaldirektion
 Wettbewerb ist es ihr gelungen, sehr stark in die Gestaltung der nationalen Energiepolitik einzugreifen.
- Gleichwohl entwickelt sich auch hier der Ausbau der Erneuerbaren sehr dynamisch.
- Das 20%-Ziel bei den Erneuerbaren wird in 2020 aller Voraussicht nach erreicht.

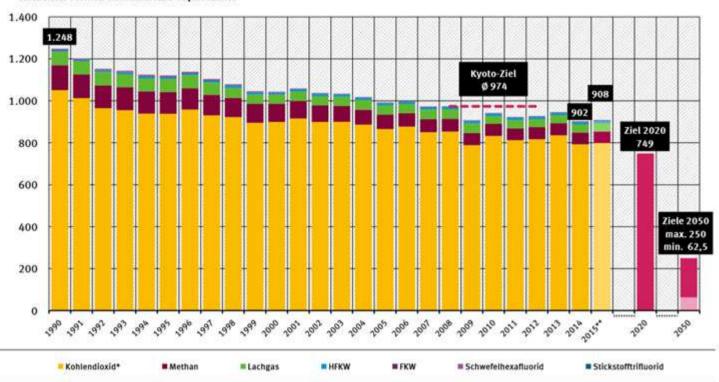
c) Energiewende nationalc1) Bestandsaufnahme

Offizielle nationale Teilziele 2020 - 2050

Taballa 2.1: Quantitative Ziele der Energiewende und Status Que (2014)

	2014	2020	2030	2040	2050
Treibhausgasemissionen					
Treibhausgasemissionen (gegenüber 1990)	-27 %	mindestens -40 %	mindestens -55 %	mindestens -70 %	mindestens -80 bis -95 %
Erneuerbare Energien					
Anteil am Bruttoendenergiever- brauch	13,5 %	18 %	30 %	45 %	60 %
Anteil am Bruttostromverbrauch	27,4 %	mindestens 35 %	mindestens 50 % EEG 2025: 40 bis 45 %	mindestens 65 % EEG 2035: 55 bis 60 %	mindestens 80 %
Anteil am Wärmeverbrauch	12,0 %	14 %			
Anteil im Verkehrsbereich	5,6 %				
Effizienz und Verbrauch			Į.	li d	
Primärenergieverbrauch (gegenüber 2008)	-8,7 %	-20 %			-50 %
Endenergieproduktivität (2008–2050)	1,6 % pro Jahr (2008–2014)		2,1 % pro Jah	r (2008–2050)	
Bruttostromverbrauch (gegenüber 2008)	-4,6 %	-10 %			-25 %
Primärenergiebedarf Gebäude (gegenüber 2008)	-14,8 %	-			-80 %
Wärmebedarf Gebäude (gegenüber 2008)	-12,4 %	-20 %			
Endenergieverbrauch Verkehr (gegenüber 2005)	1,7 %	-10 %			-40 %

Quelle: Eigene Darstellung Bundesministerium für Wirtschaft und Energie 10/2015


Quelle: UBA 2016

Minderung der Treibhausgase seit 1990 in D

Treibhausgas-Emissionen in Deutschland seit 1990 nach Gasen

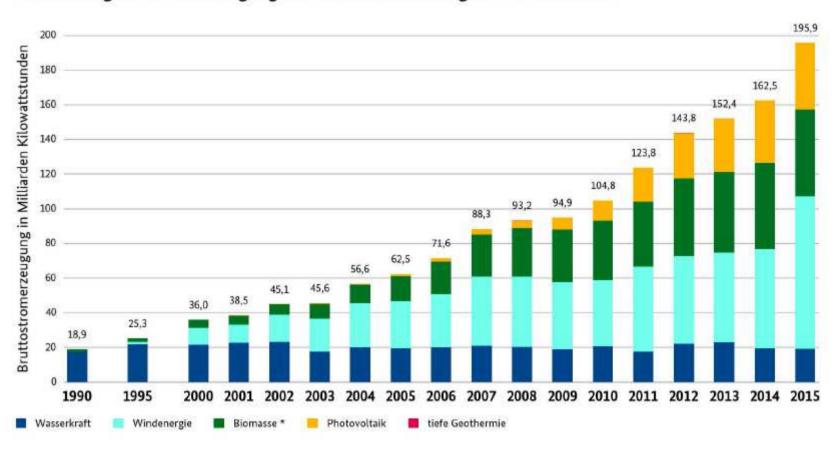
sowie Ziele für 2008-2012 (Kyoto-Protokoll), 2020 und 2050 (Bundesregierung)

Millionen Tonnen Kohlendioxid-Äquivalente

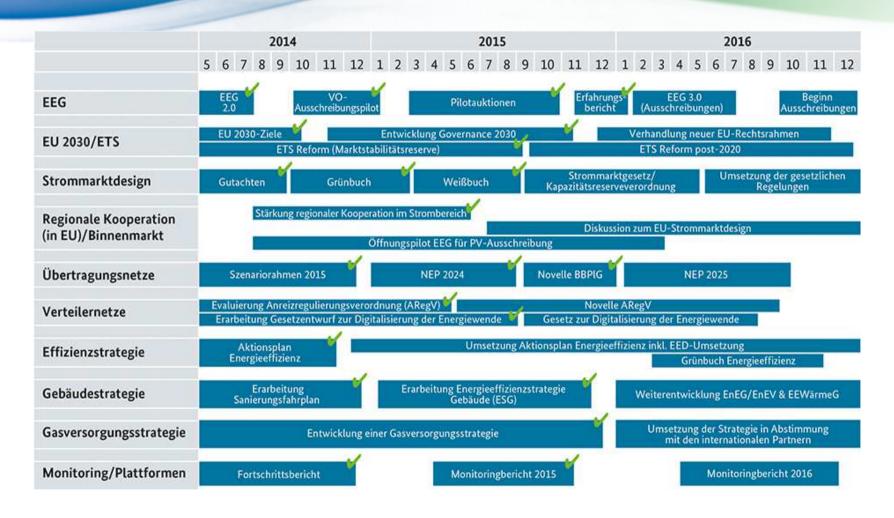
1990- heute: **-27%**

Quelle: Umweltbundesamt 2015, Nationale Treibhausgas-Inventare 1990

his 2014 (Stand: 01/2016) und Zeitnahprognose 03/2016


^{*} ohne Kohlendioxid aus LULUCF

^{**} Zeitnahprognose für 2015


Quelle: AGEE-Stat 2016

Entwicklung der EE-Stromerzeugung seit 1990

Entwicklung der Stromerzeugung aus erneuerbaren Energien in Deutschland

10-Punkte-Programm **Energiewende des BMWi**

Quelle: BMWi 2016

Nationaler Aktionsplan Energieeffizienz

NAPE-Meter

CO2-Gebäudesanierungs- programm	Marktanreizprogramm zur Nutzung erneuerbarer Energien	Initiative Energieeffizienz- Netzwerke	Auditpflicht für Großunternehmen	Energieeffizienzstrategie Gebäude
Energleberatung	Abwärme besser nutzen	Weiterentwicklung der KfW-Energieeffizienz- programme	Wettbewerbliche Ausschreibungen im Bereich Stromeffizienz	Anreizprogramm Energieeffizienz
Nationale Top-Runner-Initiative	Unterstützung der Marktüberwachung	Neues EU-Energielabel	Pilotprogramm "Einsparzähler"	Nationales Effizienzlabel für Heizungsaltanlagen

- Maßnahme erfolgreich umgesetzt
- Maßnahme gestartet, aber noch nicht vollständig umgesetzt

Quelle:Expertenkommission 2015

Monitoring der Energiewende

Expertenkommission zum Monitoring-Prozess "Energie der Zukunft"

Stellungnahme zum vierten Monitoring-Bericht der Bundesregierung für das Berichtsjahr 2014

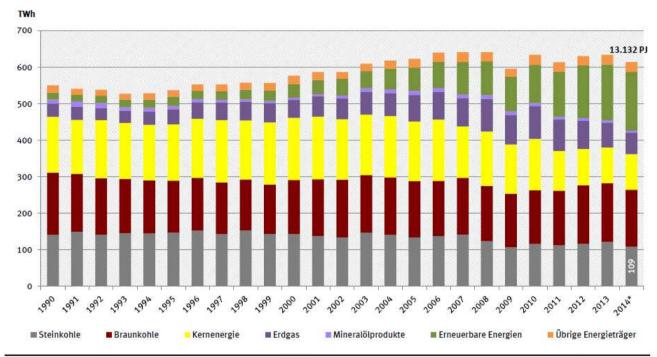
Berlin · Münster · Stuttgart, November 2015

- Prof. Dr. Andreas Löschel (Vorsitzender)
- · Prof. Dr. Georg Erdmann
- Prof. Dr. Frithjof Staiß
- Dr. Hans-Joachim Ziesing

Monitoring der Energiewende

Tabelle 1: Trend-Bewertung der Zielerreichung im Monitoring-Bericht (Entwurf vom 05.11.2015)

	_	-	-
Indikator	Ist 2014	Ziel in 2020	Trend
Erneuerbare Energien am Bruttoendenergieverbrauch	13,5 %	18 %	••••
Erneuerbare Energien am Bruttostromverbrauch	27,4 %	mindestens 35 %	••••
Erneuerbare Energien am Wärmeverbrauch	12,2 %	14 %	••••
Erneuerbare Energien im Verkehrsbereich	5,6 %	10 %	••••
Primärenergieverbrauch (unbereinigt)	-8,7 %	-20 % ggü. 2008	••••
Endenergieproduktivität	1,6 % p. a.	2,1 % p. a. ab 2008	
Bruttostromverbrauch	-4,6 %	-10 % ggü. 2008	••••
Wärmebedarf Gebäudesektor	-12,4 %	-20 % ggü. 2008	••••
Endenergieverbrauch Verkehrssektor	1,7 %	-10 % ggü. 2005	••••
Treibhausgasemissionen	-27 %	-40 % ggü. 1990	••••


Quelle: Eigene Darstellung entsprechend BMWi (2015a)

c) Energiewende national c2) Ausgewählte Entwicklungen

Kohleverstromung in D seit 1990

Bruttostromerzeugung in Deutschland nach Energieträgern

Daten und Fakten zu Braun- und Steinkohlen Status quo und Perspektiven Umwelt 📦 Bundesamt

*vorläufige Angaben, z.T. geschätzt

Quelle: AG Energiebilanzen: Bruttostromerzeugung in Deutschland von 1990 bis 2014 nach Energieträgern, Stand 08/2015

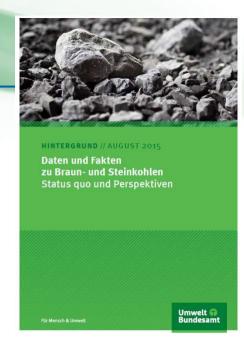
Die Kohleverstromung verharrt seit vielen Jahren auf hohem **Niveau**

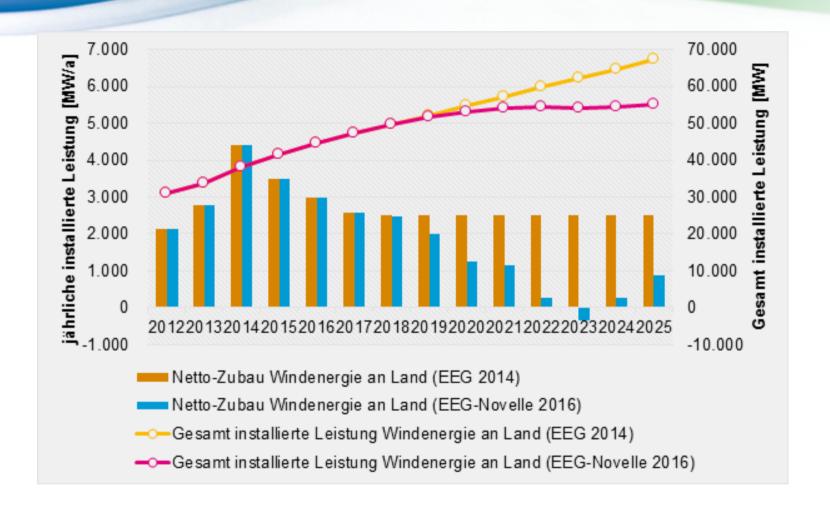
Braunkohleverstromung in D seit 1990

Tabelle 32

Entwicklung des Anteils von Braunkohlen an der Bruttostromerzeugung in Deutschland

Jahr	Braunkohlen	Bruttostromerzeugung insgesamt	Prozentualer Anteil der Braunkohlen
	[TWh]	[TWh]	[%]
1990	171	550	31%
1991	158	540	29%
1992	155	538	29%
1993	148	527	28%
1994	146	529	28%
1995	143	537	27%
1996	144	553	26%
1997	142	552	26%
1998	139	557	25%
1999	136	556	24%
2000	148	577	26%
2001	155	586	26%
2002	158	587	27%
2003	158	609	26%
2004	158	618	26%
2005	154	623	25%
2006	151	640	24%
2007	155	641	24%
2008	151	641	24%
2009	146	596	24%
2010	146	633	23%
2011	150	613	24%
2012	161	630	26%
2013	161	633	25%
2014*	156	614	25%




Tabelle 7

Volllaststunden der deutschen Braunkohlenkraftwerke

Studie	2010	2011	2012	2013	2014
BDEW 2014	6.600	6.820	6.800	7.030	
BMWi 2013			6.546		
VDI 2013			6.850		
Fraunhofer ISE 2013 (mittlere Auslastung)			7.100		
Kleine Anfrage (Sachsen-Anhalt 2013)*	5.104	5.500	5.706		
BWK 67/2015 (Heft 5)					6.900
DEBRIV 2015					7.000
UBA-Datenbank 2015 (jährliche Benutzungsstunden)		6.684	6.458	6.670	6.782

Quelle: UBA 2015, eigene Zusammenstellung

Der Windausbau wird abgeknickt

Quelle: BNetzA 2016

Ausfallarbeit durch Abregelung

Netzengpassmaßnahmen 2015

- Die Kosten zur Netzengpassvermeidung betrugen in 2015 rund 1 Mrd €
- Davon 476 Mio € für Abregelung von EE-Anlagen (4,7 TWh entspricht ca. 3% der EE-Menge)
- Kontinuierlicher Anstieg der EE-Abregelung

	2010	2011	2012	2013	2014	2015
GWh	127	421	385	555	1.581	4.698

Die Nummern an den Netzengpässen stellen den Bezug zu den Quartalsberichten "Netz- und Systemsicherheitsmaßnahmen" der Bundesnetzagentur dar © Bundesnetzagentur

Weitere Entwicklungen und Weichenstellungen

- Ausbau der PV seit 2014 deutlich unter der Zielsetzung von 2.500 MW
- ► Verunsicherung der Investoren durch die Einführung von Ausschreibungen in 2017
- Absenkung des KWK-Ziels von ursprünglich 150 TWh in 2025 auf 120 TWh
- ► Faktischer Stopp einer Ausbauperspektive der Bioenergie mit einem Zubauziel von 150 MW/a (brutto)
- Ausbremsen von privater Eigenerzeugung und Mieterstrommodellen durch Zusatzbelastungen

c) Energiewende national c3) Perspektiven und Instrumentierungen

Zur Bedeutung von Systemgrenzen: zentral oder dezentral?

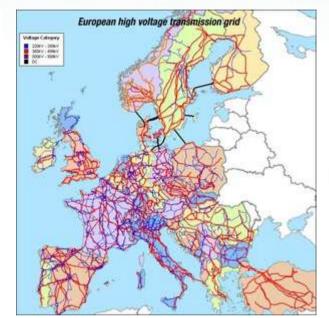
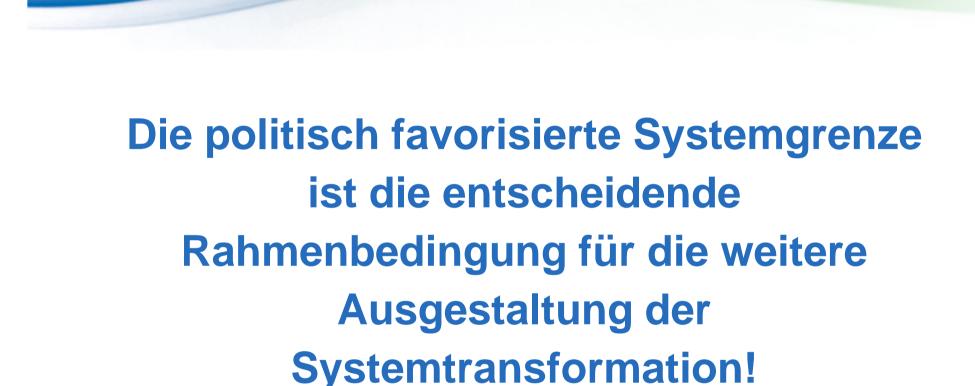
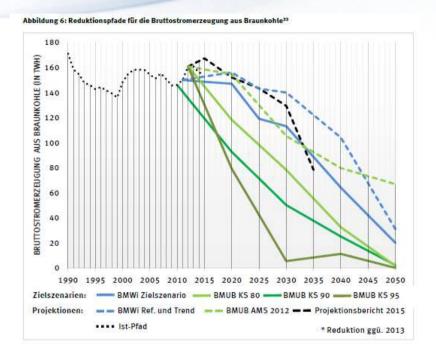
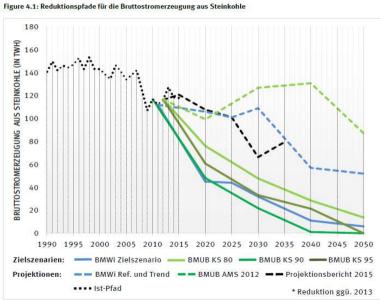

China plant ein Stromnetz für die ganze Welt

Foto: Infografik Die Welt


Liu sprach vom Ausbau großer Windkraftkapazitäten am Nordpol, die mit Solarparks rund um den Äquator verbunden werden sollten. Grundlage für das Netz sei die Ultrahochspannungstechnik (UHV), mit der China bereits seit rund zehn Jahren Erfahrungen sammle. Dabei werden 800.000 Volt über Gleichstromkabel oder bis zu 1,1 Millionen Volt über Wechselstromsysteme geleitet

Europäische **Kupferplatte?**




Ausgewählte Perspektiven und Instrumentierungen

- notwendige Kohle-Reduktionspfade
- Verringerung der Mindesterzeugung ("Mustrun-Kraftwerke")
- Sektorkopplung
- dezentrale Systemansätze

Notwendige Kohle-Reduktionspfade

download unter https://www.umweltbundesamt.de/publikationen/klimaschutz-im-deutschen-kraftwerkspark

Verringerung der Mindesterzeugung wodurch?

- durch Stilllegung von (inflexiblen)
 Kohlekraftwerken
- durch KWK-Flexibilisierung
- durch Änderung der Präqualifikationsbedingungen auf den Regelenergiemärkten
- durch mehr Transparenz und Veränderungen beim Redispatch

Flexibilisierung der KWK

Entwurf Novellierung EnWG, Juni 2016

§ 13 wird wie folgt geändert:

a) Nach Absatz 6 folgender Absatz 6a eingefügt:

"(6a) Die Betreiber von Übertragungsnetzen können mit Betreibern von KWK-Anlagen vertragliche Vereinbarungen zur Reduzierung der Wirkleistungseinspeisung aus der KWK-Anlage und gleichzeitigen Lieferung von elektrischer Energie für die Aufrechterhaltung der Wärmeversorgung nach Absatz 1 Nummer 2 und Absatz 3 Satz 2 schließen, wenn die KWK-Anlage

- technisch unter Berücksichtigung ihrer Größe und Lage im Netz geeignet ist, zur Beseitigung von Gefährdungen oder Störungen der Sicherheit oder Zuverlässigkeit des Elektrizitätsversorgungssystems aufgrund von Netzengpässen im Höchstspannungsnetz effizient beizutragen.
- vor dem 1. Januar 2017 in Betrieb genommen worden ist und
- eine installierte elektrische Leistung von mehr als 500 Kilowatt hat.

In der vertraglichen Vereinbarung nach Satz 1 ist zu regeln, dass

- die Reduzierung der Wirkleistungseinspeisung und die Lieferung von elektrischer Energie zum Zweck der Aufrechterhaltung der Wärmeversorgung abweichend von § 3 Absatz 2 des Kraft-Wärme-Koppelungsgesetzes und den §§ 14 und 15 des Erneuerbare-Energien-Gesetzes eine Maßnahme nach Absatz 1 Nummer 2 ist, die gegenüber den übrigen Maßnahmen nach Absatz 1 Nummer 2 nachrangig durchzuführen ist.
- 2. für die Reduzierung der Wirkleistungseinspeisung vom Übertragungsnetzbetreiber eine angemessene Vergütung zu zahlen ist und die Kosten für die

Lieferung der elektrischen Energie zu erstatten sind; § 13a Absatz 2 bis 4 ist entsprechend anzuwenden, und

die erforderlichen Kosten für die Investition für die elektrische Wärmeerzeugung vom Betreiber des Übertragungsnetzes einmalig erstattet werden.

Die Betreiber der Übertragungsnetze müssen sich bei der Auswahl der KWK-Anlagen, mit denen vertragliche Vereinbarungen nach den Sätzen 1 und 2 geschlossen werden, auf die KWK-Anlagen beschränken, die kostengünstig und effizient zur Beseitigung des Netzengpasses beitragen können. Die vertragliche Vereinbarung muss mindestens für fünf Jahre abgeschlossen werden und ist mindestens vier Wochen vor dem Abschluss der Bundesnetzagentur und spätestens vier Wochen nach dem Abschluss den anderen Übertragungsnetzbetreibern zu übermitteln. Die installierte elektrische Leistung von Wärmeerzeugern, die aufgrund einer vertraglichen Vereinbarung mit den KWK-Anlagen nach den Sätzen 1 und 2 installiert wird, darf 2 Gigawatt nicht überschreiten."

Flexibilisierung der KWK

Entwurf Novellierung EnWG, Juni 2016

- Die Maßnahme verringert effektiv die Abregelung erneuerbarer Energien und führt den Strom einer sinnvollen Nutzung zu. Sie hat beim Redispatch eine doppelte Entlastungswirkung im Stromnetz, da elektrische Wärmeerzeuger den Strombezug erhöhen und die KWK-Anlagen ihre Stromerzeugung verringern.
- Die Maßnahme erleichtert den ÜNB das Netzengpassmanagement und erhöht die Sicherheit des Systems. Durch die Maßnahme können nun auch KWK-Anlagen im Redispatch ihre Stromerzeugung anpassen. Dadurch stehen den ÜNB mehr Redispatch-Potentiale zur Verfügung, so dass sie weniger ultima ratio-Maßnahmen nach § 13 Absatz 2 EnWG nutzen müssen.
- Der Brennstoffverbrauch und damit die CO2-Emissionen der KWK-Anlagen werden verringert.

Flexibilisierung Regelenergiemärkte

- kürzere Vorlaufzeiten
- kleinere Leistungsscheiben
- Regelleistung, die aus konventionellen Kraftwerken in Netzengpass-Gebieten bereitgestellt wird, sollte im Redispatch auf geeignete Kraftwerke außerhalb der Netzengpass-Gebiete verteilt werden
- Quoten für flexible Optionen?

Potenziale regelbarer Lasten

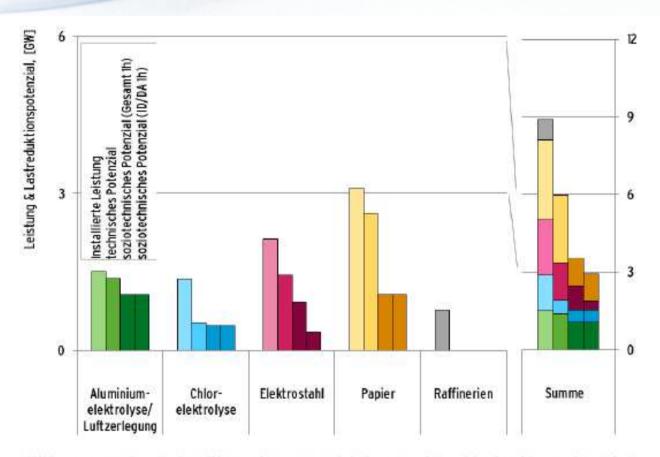
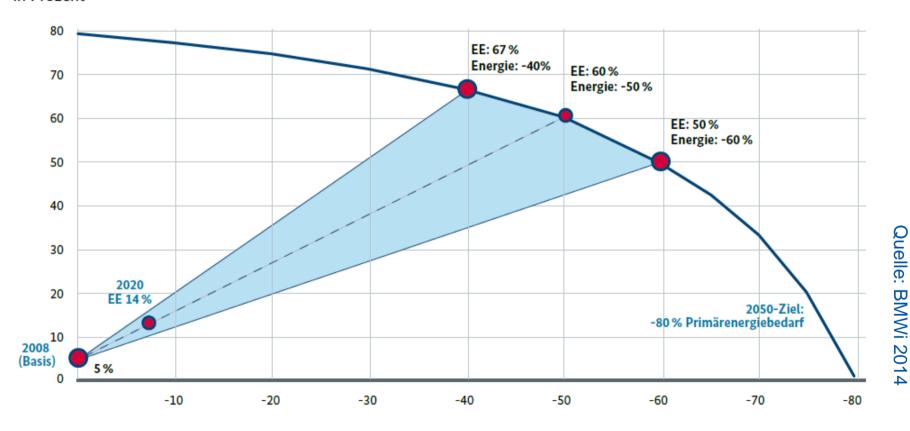
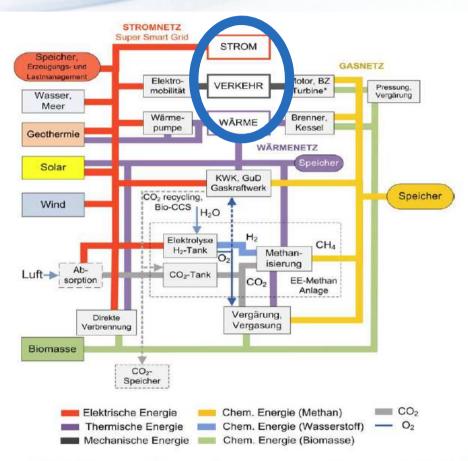



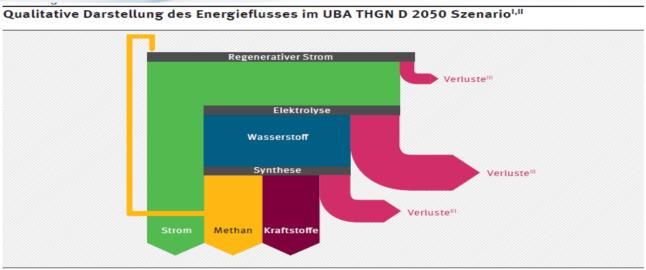
Abbildung 5 Darstellung der installierten Leistung, des technischen Potenzials und des derzeitigen soziotechnischen Potenzials in den befragten Branchen⁵

Plan B jenseits der Passivhauswelt notwendig

Abbildung 6: (möglicher) Zielkorridor aus Energieeinsparung und Erhöhung des EE-Anteils von 2008 bis 2050 in Prozent

Sektorkopplung




Abbildung 3.17: Struktur einer zukünftigen Energieversorgung mit erneuerbaren Energien auf Basis gekoppelter Strom-, Gas- und Wärmenetze mit EE-Methan als chemischem Energieträger und Langzeitspeicher, angelehnt an [Sterner 2009]

Perspektivisch wachsen Strom-, Wärme- und Verkehrssystem stärker zusammen

Grundsätzliches zur Sektorkopplung

- ► Es geht nicht in erster Linie um die Verwertung temporärer (netzbedingter) Stromüberschüsse, sondern um die Ausgestaltung eines nachhaltigen Energiesystems.
- ▶ Das bedeutet einen Ausbau der erneuerbaren Energien weit über die Nachfrage des Stromsystems hinaus.
- ► Höchste Priorität hat die Vermeidung bzw. Verringerung (netzbedingter) Stromüberschüsse.
- ▶ Wo die temporär nicht vermieden werden können, sollten CO2-mindernde und systemdienliche Lösungen gefunden werden.

Treibhausgasneutrales Deutschland

Treibhausgasneutrales Deutschland

Ouelle: Umweltbundesamt, 2013

Basis: rund 3.000 TWh **Nettostromerzeugung**

Tabelle B-14: Gesamter Endenergieverbrauch im UBA THGND 2050 - Szenario

	Strom in TWh	regeneratives Methan in TWh	flüssige regenerative Kraftstoffe in TWh
private Haushalte	104,7	44,5	0
GHD	90,3	62,4	18,6
Industrie LXXXIX, XC	179,7	198,8	0
Verkehr	91,1	0	533,3
Summe energetisch	465,8	305,7	551,9
	1323,4		
Industrie stofflich		282	
Summe energetisch und stofflich		1605,4	

I Inklusive des Bedarfs an regenerativen Einsatzstoffen für die chemische Industrie II Die Darstellungen der Energieströme sind proportional zu den notwendigen Energieströmen.
III einschließlich Leitungsverluste, der Verluste aus der Methan-Rückverstromung und der Verluste der Biomassenutzung und Strombereitsstellung)

Dezentrale Systemansätze: die neue Dynamik!

- höherer Autonomiegrad von Einzelgebäuden
- Mieterstromkonzepte
- virtuelle Kraftwerke
- Schwarmstromansätze
- 100% EE-Kommunen
- dezentraler Bilanzkreisausgleich
- dezentrales Netzlastmanagement
- Unterregelzonen ("Energiewaben")
- •

Volkswirtschaftlich ineffizient und "entsolidarisierend"!


Entsolidarisierung?

- großzügige Befreiung der Industrie von der EEG-Umlage
- ca. 50 TWh industrielle KWK-Eigenerzeugung ohne Steuern und Abgaben
- deutliche Entlastung der Industrie bei den Netzentgelten (§19 Abs. 2 StromNEV)
- deutliche Entlastung der Industrie bei der Stromsteuer

Mit Sprache wird häufig massiv Politik gemacht!

Ausblick: Wie sollte es weitergehen?

- Der weitere ehrgeizige Ausbau von Wind- und PV-Anlagen ist das Herzstück der Energiewende
- Ein geordneter und rascher Ausstieg aus der Braunkohleverstromung ist das wichtigste flankierende Element zum Ausbau der Erneuerbaren
- Eine stärkere Sektorkopplung erschließt auch den Wärme- und den Mobilitätssektor für Wind- und PV-Strom; allerdings sollte die Zeitachse beachtet werden
- Die Dezentralisierungsaktivitäten vieler Akteure sind aktuell das dynamische Element der Energiewende und zu unterstützen

Herzlichen Dank für Ihre Aufmerksamkeit!