For our environment

Keynote

"The energy system 2030 – transition completed?"

Prof. Dr. Uwe Leprich
Head of Department | 12:
Climate Protection and Energy

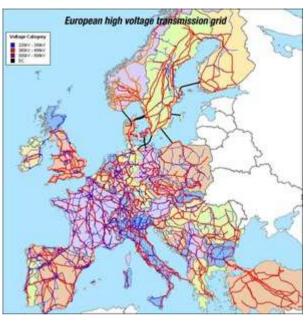
UFZ Energy Days 2017 Leipzig, 15 March 2017

Which energy system are we talking about?

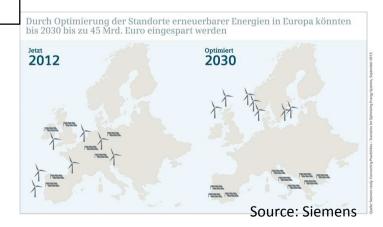
Energy transition and Energy Systems: centralized or decentralized?

WIRTSCHAFT MEGAPROJEKT

China plant ein Stromnetz für die ganze Welt

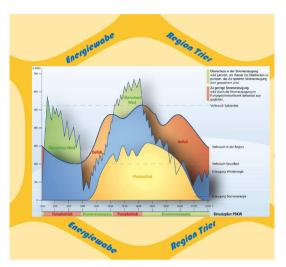

Liu sprach vom Ausbau großer Windkraftkapazitäten am Nordpol, die mit Solarparks rund um den Äquator verbunden werden sollten. Grundlage für das Netz sei die Ultrahochspannungstechnik (UHV), mit der China bereits seit rund zehn Jahren Erfahrungen sammle, Dabei werden 800.000 Volt über Gleichstromkabel oder bis zu 1,1 Millionen Volt über Wechselstromsysteme

Global copper plate



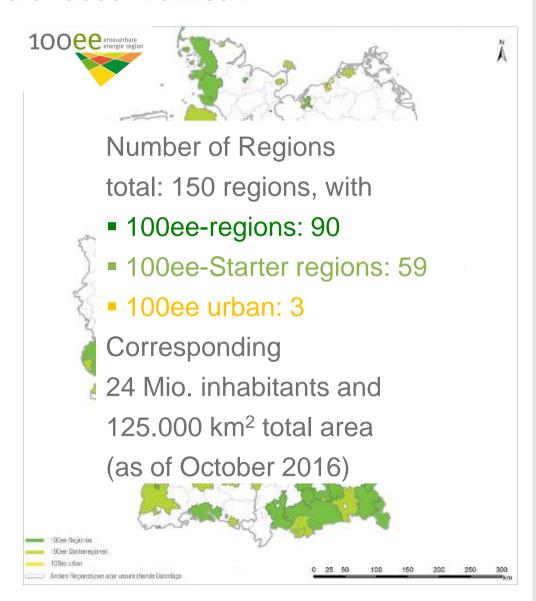
National copper plate

Copper plate as a cornerstone for the future energy system?


European copper plate

Energy transition and Energy Systems: centralized or decentralized?

Source:


Schöller 2015

A regional approach

Energy autarkic home

The German energy transition story in a nutshell

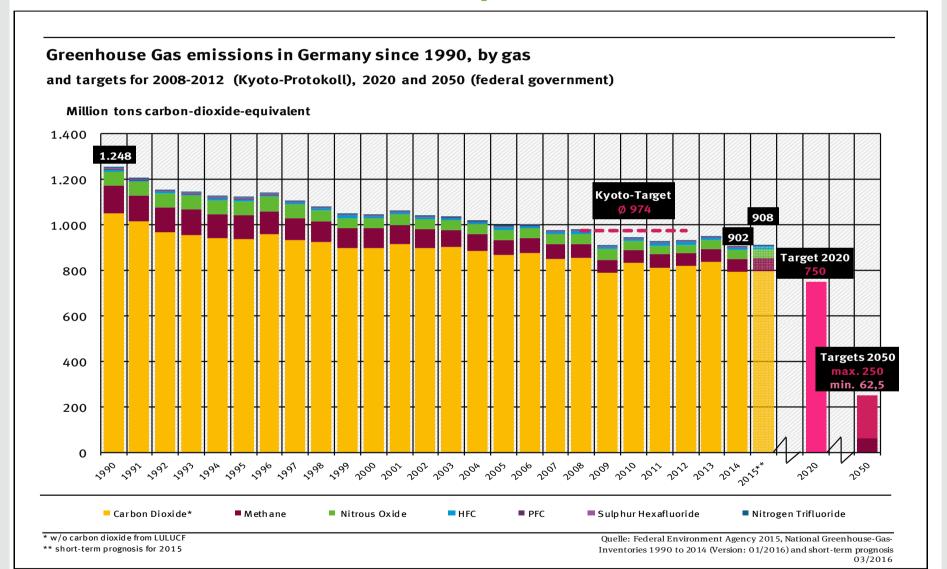
(Ownership) Unbundling	Power Exchange	(Efficiency) Network Regulation	Liberalization
Uni-directional Networks	Big Nuclear and Coal Power Plants	Peak load plants (gas, oil)	Technics
Many Small Municipal Utilities as Suppliers and DSOs	A few large integrated Utilities as Generators and TSOs	Decentralised Generators with a fix Remuneration	Players

Network Reinte- gration Approaches	Capacity and Reserve Mechanisms	Innovation Regulation	Liberalization
Bi-directional Networks	Variable Renewable Energy Sources	Flexibility Options	Technics
Many Suppliers with and w/o networks	A few large TSOs	Many Centralised and Decentralised Generators	Players

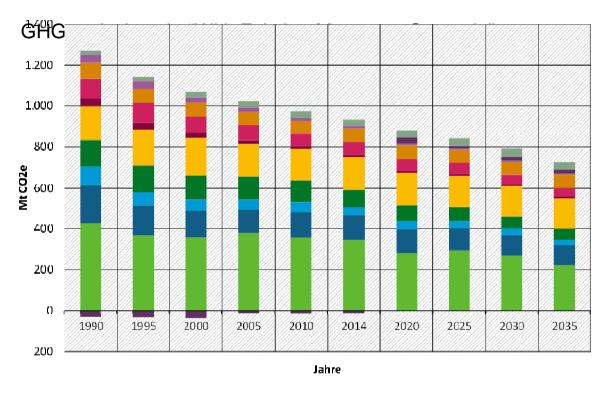
Energy targets and energy scenarios 2030 and beyond

Transformation of the energy system

- Germany's Target in 2050: 80-95% reduction of greenhouse gas emissions
 - ➤ Implications for the energy sector: Decarbonisation


	Climate	Renewable Energy			Efficiency		
	GHG (vs. 1990)	Electric power	Total share	Primary energy	Energy productivity	Modernising buildings	
2020	- 40 %	35%	18%	- 20%	increase to 2.1% p.a.	double rate 1% → 2%	
2030	– 55 %	50%	30%				
2040	- 70 %	65%	45%				
2050	– 80-95 %	100	% !!!	- 50%			

Source: KSP 2050


	1990	2015	2015	2030	2030
Handlungsfeld	(in Mio.t (CO2-Äquiv.)		in Mio. t CO2-	
			1990 in %	Äquiv.	1990 in %
Energiewirtschaft	466,4	347,3	-25,5	175-183	62-61
Gebäude	209,7	122,0	-41,8	70-72	67-66
Verkehr	163,3	159,6	-2,3	95-98	42-40
Industrie	283,3	188,6	-33,4	140-143	51-49
Landwirtschaft	90,2	73,2	-18,8	58-61	34-31
übrige Emissionen	38,0	11,2	-70,5	5	87
Summe THG	1250,9	901,9	-27,9	543-562	56-55

Climate Protection Plan 2050 – sector targets

GHG trend description – overview

Are we on the right track? – Projections Report 2017

GHG emissions in 2030 ("With Existing Measures Scenario"):

792.5 mt CO₂e

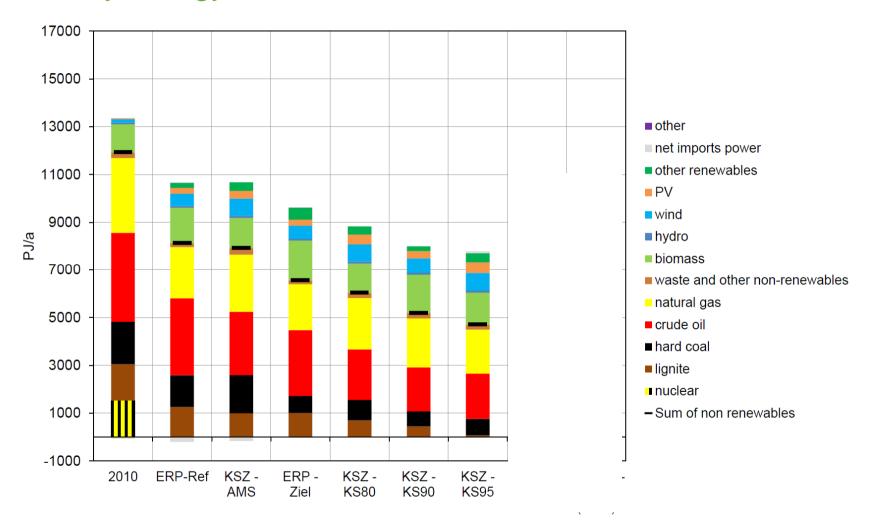
GHG Projections Report 2017

Measure driven scenario

Includes all policies and
measures adopted by July 2016

A comparison across studies

What do different scenarios implicate for the energy market in 2030?


Szenario	THG-Minderungsziel in 2050	Abkürzung
Referenzszenarien:		
Entwicklung der Energiemärkte - Energiereferenzprognose, Referenzszenario		
Trendszenario	-	ERP-Ref
Klimaschutzszenarien 2. Runde, Aktuelle Maßnahmen Szenario	-	KSZ-AMS
Zielszenarien:		
Entwicklung der Energiemärkte - Energiereferenzprognose, Zielszenario	80% ⁽¹⁾	ERP-Ziel
Klimaschutzszenarien 2. Runde, Klimaschutzszenario 80	80%	KSZ-KS80
Klimaschutzszenarien 2. Runde, Klimaschutzszenario 95	95%	KSZ-KS95
Klimaschutzszenarien 1. Runde, Klimaschutzszenario 90	90%	KSZ-KS90
Leitstudie 2011, Szenario A	80%	LS 2011-A
Leitstudie 2011, Szenario THG95	95% ⁽²⁾	LS 2011-THG95
Treibhausgasneutrales Deutschland im Jahr 2050	95%	THGND

¹⁾ nur energiebedingte Emissionen

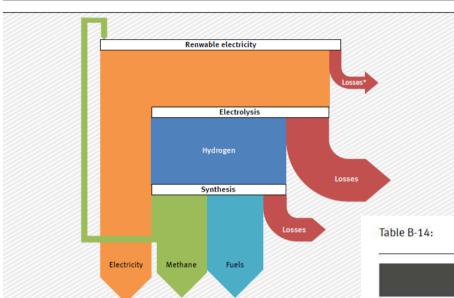
Source: Studie "Überblick über vorliegende Szenarienarbeiten für den Klimaschutz in Deutschland bis 2050", Öko-Institut

²⁾ Ziel wird erst in 2060 erreicht

Primary energy demand 2010 and 2030

Source: Studie "Überblick über vorliegende Szenarienarbeiten für den Klimaschutz in Deutschland bis 2050", Öko-Institut

The energy system 2030 – transition completed?


Critical points

- Network expansion / network upgrades
- > Further ambitious investments in renewable energies
- > Speed of energy efficiency progress in all sectors
- phase-out of coal power plants

The energy system 2030 – transition completed?

Germany 2050: a GHG neutral country

Figure B-25: Qualitative energy flow representation, c, own graphics

^{*} incl. grid losses, losses from consumption of methane into electricity and losses from use of biomass for electricity provision

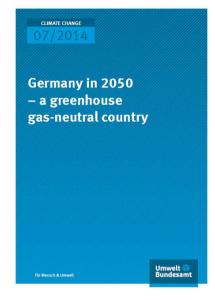


Table B-14: Total energy consumption in the Federal Environment Agency's GHG-Neutral Germany 2050 scenario

	Electricity in TWh	Renewable methane in TWh	Liquid renewable fuels in TWh		
Private households	104.7	44.5	0		
Commerce, trade and services	90.3	62.4	18.6		
Industry ^{LXXXIX,XC}	179.7	198.8	0		
Transport	91.1	0	533.3		
Total energy	465.8	305.7	551.9		
	1323.4				
Industry material use		282			
Total energy and material	1605.4				

Germany 2050: a GHG neutral country

- Ambitious climate targets can be reached: per-capita emissions of just one metric ton of CO₂e in 2050 possible!
- ➤ Through sector coupling **emissions** from the entire energy sector including electricity, heating, and transport could **fall to near zero** by 2050.
- Some emission sources have a limited capacity to reduce their emissions, emission socket remains (agriculture, industries).
- Sector coupling supports the large scale integration of RES into the system as synergistic effects can be harnessed due to different demand structures.
- Sector coupling facilitates a substitution strategy for fossil energy carriers in all sectors in the long term.

Perspective

- The new energy system will be dominated by variable renewable energies, mainly wind and solar
- Flexibility options like gas turbines, CHP plants, storages, DSM measures etc. will stabilize the system and compete against each other
- > The better the network the less flexibility options are needed
- There will be no coherent optimized central system from the scratch; decentralized subsystems will play a role
- ➤ 2030 will be a way station on the way to a 100% renewable energy system; however the energy transition will not be reversible

Thank you very much!

Uwe Leprich uwe.leprich@uba.de

www.uba.de