Umwelt
Bundesamt

Für Mensch & Umwelt

89. Sitzung des Braunkohlenausschusses des Landes Brandenburg (BKA)

Klimaschutz im Stromsektor 2030 – Vergleich von Instrumenten zur Emissionsminderung

Prof. Dr. Uwe Leprich Leiter der Abteilung I 2 "Klimaschutz und Energie"

Cottbus, 23. März 2017

Die Studie

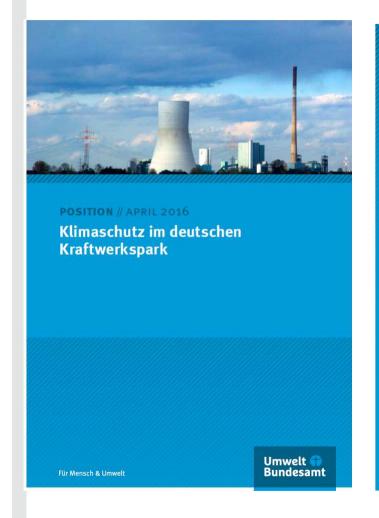
CLIMATE CHANGE 02/2017

Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Forschungskennzahl 3714 41 1030 UBA-FB 002446

Klimaschutz im Stromsektor 2030 – Vergleich von Instrumenten zur Emissionsminderung

von

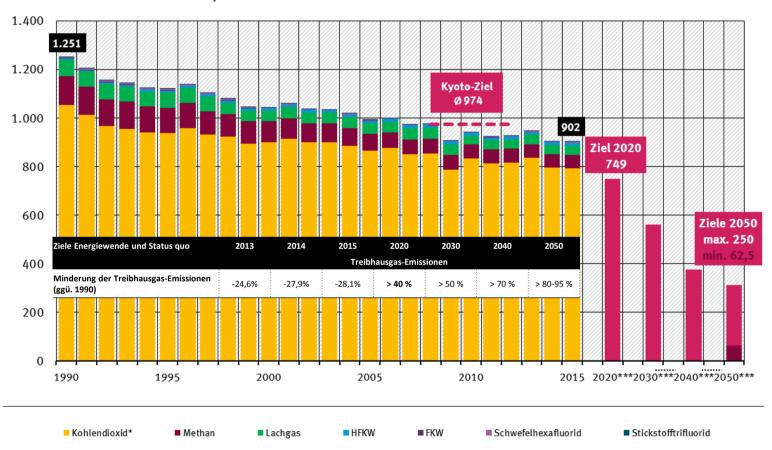

Hauke Hermann, Charlotte Loreck, David Ritter, Benjamin Greiner, Friedhelm Keimeyer, Vanessa Cook (Übersetzung) Öko-Institut, Berlin

Nina Bartelt, Micha Bittner, Dominic Nailis Büro für Energiewirtschaft und technische Planung GmbH, Aachen

Prof. Dr. Stefan Klinski Professor für Wirtschaftsrecht, insbesondere Umweltrecht an der Hochschule für Wirtschaft und Recht Berlin (HWR)

Im Auftrag des Umweltbundesamtes

UBA-Beiträge zur Kohlediskussion



Ausgangssituation

Entwicklung der Treibhausgase in Deutschland seit 1990

Treibhausgas-Emissionen in Deutschland seit 1990 nach Gasen

Millionen Tonnen Kohlendioxid-Äquivalente

Emisionen ohne Landnutzung, Landnutzungsänderung & Forstwirtschaft
*** Ziele 2020 bis 2050: Energiekonzept der Bundesregierung (2010)

Quelle: Umweltbundesamt: Nationale Treibhausgas-Inventare 1990 bis 2015 (Stand 02/2017)

Die Sektoralziele des Klimaschutzplans 2050

	1990	2015	2015 2015		2030	
Handlungsfeld	(in Mio.t C	(in Mio.t CO2-Äquiv.)		in Mio. t CO2-	Änderung ggü.	
			1990 in %	Äquiv.	1990 in %	
Energiewirtschaft	466,4	347,3	-25,5	175-183	62-61	
Gebäude	209,7	122,0	-41,8	70-72	67-66	
Verkehr	163,3	159,6	-2,3	95-98	42-40	
Industrie	283,3	188,6	-33,4	140-143	51-49	
Landwirtschaft	90,2	73,2	-18,8	58-61	34-31	
übrige Emissionen	38,0	11,2	-70,5	5	87	
Summe THG	1250,9	901,9	-27,9	543-562	56-55	

Seit vielen Jahren stagnierende Braunkohlen-CO₂-Emissionen

Stand für N	IIR 2016	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014*	2015**
CO ₂ - Emissione	n aus der Str	omerzeugun				ME								
Braunkohlen	[Miot]	167	165	162	159	164	158	153	151	156	166	163	159	159
Steinkohlen	[Miot]	115	111	109	116	118	102	89	95	91	94	104	96	95
Erdgas	[Miot]	24	25	28	29	29	33	30	32	30	27	24	20	20
Mineralöle	[Miot]	8	9	10	8	8	8	8	7	5	6	5	5	5
Müll (fossil)	[Miot]	8	7	8	9	10	9	9	10	13	13	14	14	13
sonstige	[Miot]	17	17	17	19	22	20	12	20	19	19	21	20	19
gesamt	[Miot]	340	333	333	340	351	330	301	315	315	326	331	315	312

^{*}Vorläufige Daten

^{**}geschätzte Daten

Braunkohlestrom hat die höchsten CO₂-Emissionen

Tabelle 2: CO₂-Emissionsfaktoren fossiler Brennstoffe im Vergleich mit dem CO₂-Emissionsfaktor des deutschen Strommixes

Brennstoff/Ein- heit	CO ₂ -Emissionsfak- tor bezogen auf den Brennstoffein- satz ¹ [g/kWh]	Brennstoffausnu- zungsgrad netto im Jahr 2014 bezo- gen auf den Strom- verbrauch [%]	_	Vergleich CO ₂ - Emissionsfaktor Strommix 2014 [g/kWh]
Erdgas	201	54%	369	
Steinkohle	337	37%	899	579
Braunkohle	407	35%	1.158	

	Wirkungsgrad %	Emissionsfaktor			
		g CO2/kWhth	g CO2/kWhel		
Braunkohle – neues KW	42,0%	404	963		
Steinkohle – altes KW	35,5%	342	963		

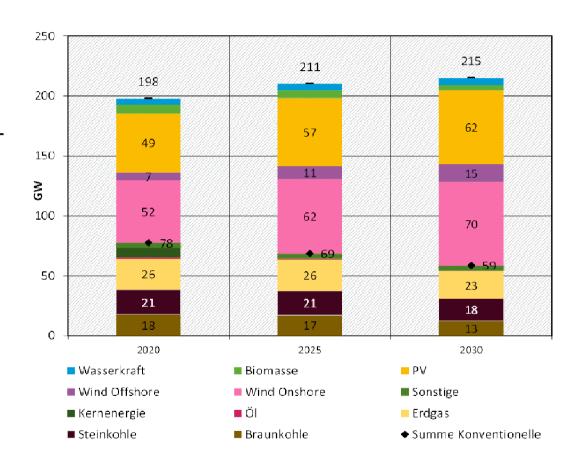
Zwischenfazit

- Nach dem Klimaschutzplan 2050 der Bundesregierung müssen sich die THG-Emissionen der Energiewirtschaft bis 2030 gegenüber heute etwa halbieren
- Das Klimaschutzziel 2020 lässt sich überhaupt nur mit einer signifikanten Reduktion der Kohleverstromung erreichen.
- In den letzten 20 Jahren sind die CO₂-Emissionen aus der Braunkohleverstromung in etwa konstant geblieben.
- Es geht nicht mehr um das ob, sondern um das wie und wann des Ausstiegs aus der Kohleverstromung in Deutschland.

Die Studie

Rahmen

- Alle betrachteten Instrumente zur Emissionsminderung im Stromsektor sind so ausgestaltet, dass sie im Jahr 2030 dem Ambitionsniveau des Klimaschutzplans entsprechen.
- Die CO₂-Emissionen des Stromsektors werden dadurch um etwas
 50% gegenüber dem heutigen Niveau gesenkt.
- Dabei ist zu beachten, dass die Emissionen der Kohlekraftwerke bereits in der Referenzentwicklung wegen absehbarer Stilllegungen alter Anlagen gegenüber dem Jahr 2014 um 40% bis 2030 zurückgehen.
- Für die Erreichung der Klimaschutzziele im Stromsektor ist eine stärkere Minderung der Emissionen aus Kohlekraftwerken um etwa 60% gegenüber dem Jahr 2014 erforderlich.


Überblick über die untersuchten Instrumente

Тур	Instrument	Parametrisierung 2030
Basislauf	ohne Instrument	Orientiert am Mit-weiteren-Maßnahmen- Szenario des Projektionsberichts 2015
Kapazitäts- management	Nur Braunkohle (Kapa BK)	Reduktion der installierten Kapazität der Braunkohlekraftwerke auf 5 GW
	Braun- und Steinkohle (Kapa SK&BK)	Stilllegung aller Kohlekraftwerke, die im Jahr 2030 älter als 40 Jahre sind
CO ₂ -Preis	Nationaler CO ₂ -Preis- Aufschlag (CO₂-Preis-D)	CO ₂ -Preis von 47 € (+ 10 € gegenüber Basislauf nur in Deutschland)
	Nationaler CO ₂ -Preis- Aufschlag für Kohle (CO ₂ -Preis-D für Kohle)	CO ₂ -Preis wie in CO ₂ -Preis-D, der nur für Kohlekraftwerke gilt
	Europaweit (CO ₂ -Preis-EU)	CO ₂ -Preis im EU-ETS steigt auf 57 €/t (+ 20 € gegenüber Basislauf)
Volllaststunde n-Modell	Vbh-Begrenzung	Kohlekraftwerke müssen ihre Auslastung auf 3000 bis 4500 Vbh reduzieren

Installierte Kapazitäten im Basislauf

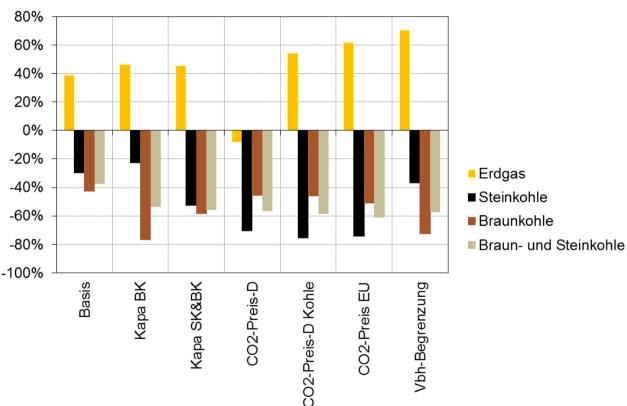
RÜCKGANG DER INSTALLIERTEN KAPAZITÄTEN IM BASISLAUF

- Für den Basislauf wurde das Mitweiteren-Maßnahmen Szenario des Projektionsbericht 2015 genommen.
- Die Autoren gingen im Szenario von einer sehr ambitionierten und idealtypischen Umsetzung des Aktionsprogramm Klimaschutz 2020 aus.
- Die installierte Leistung der Kohlekraftwerke nimmt in der Referenzentwicklung ab; der größte Teil nach 2025

Quelle: Breg: Projektionsbericht 2015 – ergänzt durch MWMS

Annahmen Kraftwerkskapazitäten Lausitz Instrumentenläufe

	Kraftwerke 2025	Kraftwerke 2030
Basislauf	Boxberg N, Boxberg P, Jänschwalde A, Jänschwalde B, Jänschwalde C, Jänschwalde D, Schwarze Pumpe A, Schwarze Pumpe B, Boxberg Q, Boxberg R	Boxberg N, Boxberg P, Jänschwalde A, Jänschwalde B, Jänschwalde C, Jänschwalde D, Schwarze Pumpe A, Schwarze Pumpe B, Boxberg Q, Boxberg R
Kapa BK	Boxberg N, Boxberg P, Jänschwalde A, Jänschwalde B, Jänschwalde C, Jänschwalde D, Schwarze Pumpe A, Schwarze Pumpe B, Boxberg Q, Boxberg R	Boxberg N, Boxberg P, Jänschwalde A, Jänschwalde B, Jänschwalde C, Jänschwalde D, Schwarze Pumpe A, Schwarze Pumpe B, Boxberg Q, Boxberg R
Kapa SK&BK	Boxberg N, Boxberg P, Jänschwalde A, Jänschwalde B, Jänschwalde C, Jänschwalde D, Schwarze Pumpe A, Schwarze Pumpe B, Boxberg Q, Boxberg R	Boxberg N, Boxberg P, Jänschwalde A, Jänschwalde B, Jänschwalde C, Jänschwalde D, Schwarze Pumpe A, Schwarze Pumpe B, Boxberg Q, Boxberg R
Übrige Instrumente	wie Basislauf	wie Basislauf

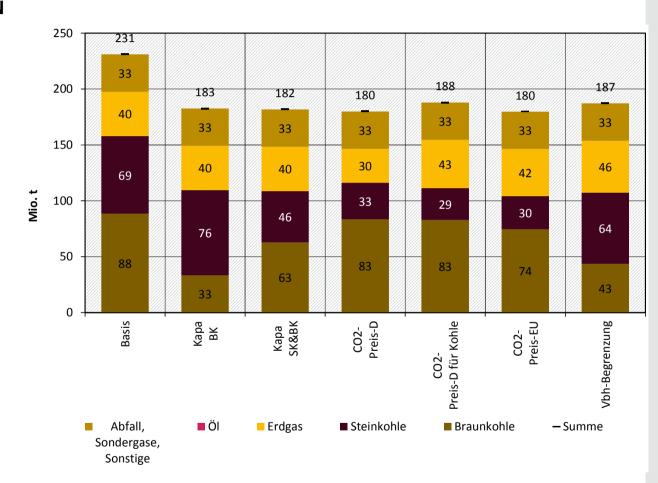

Die Ergebnisse

Modellierungsergebnisse Stromerzeugung Veränderung 2030 ggü. 2014

KOHLENVERSTROMUNG WIRD REDUZIERT – ERDGAS ANGEREGT

Bereits im Basislauf findet eine starke Verschiebung von Kohle zu Erdgas statt.

Die Braunkohlen- und -80%
Steinkohlenverstromung wird -100%
unterschiedlich stark reduziert
– je nach Instrumentenwahl.


Modellierungsergebnisse CO₂-Emissionen in Deutschland

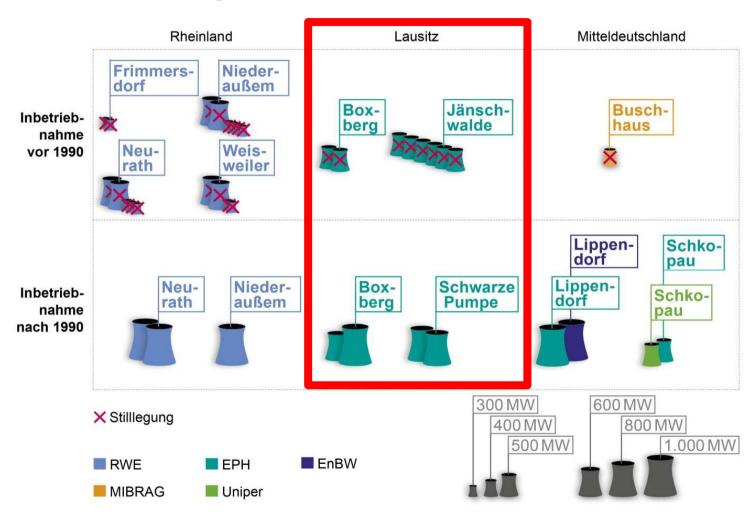
INSTRUMENTE REDUZIEREN DIE EMISSIONEN DER KOHLEVERSTROMUNG

Die Instrumente wirken unterschiedlich auf die Emissionen aus Braun- und Steinkohlenverstromung.

CO₂-Preis-Instrumente reduzieren vor allem die Steinkohlenverstromung.

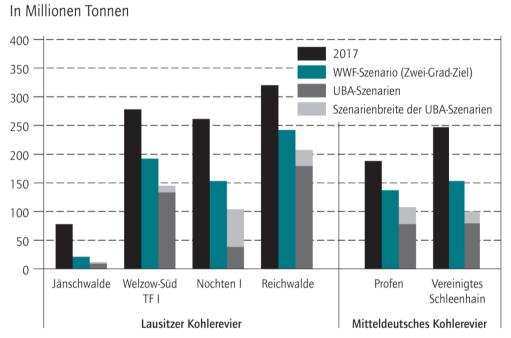
Werden nur Braunkohlenkraftwerke aus dem Markt genommen, nehmen die Emissionen der Steinkohlenverstromung gegenüber Basis zu.

Modellierungsergebnisse: Ökonomische Wirkungsanalyse


- Strompreiseffekte sind mit ca. 2 €/MWh für alle betrachtete Instrumente gering im Vergleich zum Basislauf
- Instrumente führen zu Verteilungseffekten (z.B. durch CO₂-Kosten), diese sind viel relevanter als die Unterschiede der Systemkosten zwischen den Instrumenten
- Durch einen nationalen CO₂-Preis-Aufschlag kann der Staat zusätzliche Einnahmen generieren. Aus der Perspektive der Kraftwerksbetreiber ist ein CO₂-Preis-Aufschlag aber wenig attraktiv, da dieser die Deckungsbeiträge aller Kraftwerke deutlich reduziert.
- Kapazitätsmanagement für Stein- und Braunkohle ist für viele Betreiber attraktiv -> höhere Deckungsbeiträge für im Markt verbleibende Kraftwerke durch höhere Strompreise
- Die unterschiedlichen Wirkungsmechanismen führen auch zu einer unterschiedlichen europäischen Minderungswirkung. Denn in den europäischen Nachbarländern steigen die Emissionen durch die Instrumente leicht an (Rebound-Effekt). Für einen geringen Rebound-Effekt sollte die Braunkohlenverstromung reduziert werden.
- Alle Instrumente führen dazu, dass der deutsche Stromexportüberschuss reduziert wird.
 Deutschland bleibt aber bei allen betrachteten Instrumenten im Betrachtungszeitraum Netto-Stromexporteur.

Gesamtbewertung der Instrumente

	Kapa BK	Kapa SK&BK	CO2- Preis-D	CO2- Preis-D für Kohle	CO2- Preis-EU	Vbh-Be- grenzung
Emissionsminderung in Europa	+	+		-	+	0
Robustheit der Minderungen		+				
Minimierung Kraftwerksein- satzkosten	-	0	+	+	+	-
Strompreiseffekte	0	+	+	+	•	
Deckungsbeiträge Unterneh- men	-	+		-	-	0


Kapazitätsmanagement Steinkohle und Braunkohle

→ installierte Leistungen Braunkohle in 2030

Gesamtbewertung/Ausblick Mögliche Implikationen für die Lausitz und Mitteldeutschland

Im Jahr 2030 verbleibende, bereits genehmigte Braunkohleabbaumengen im Lausitzer und im Mitteldeutschen Revier

Aufbauend auf UBA-Studien vergleicht DIW (2017) die bereits genehmigten verbleibenden Braunkohleabbaumengen der verschiedenen Tagebaue im Jahr 2017 und den Bedarf in verschiedenen aktuellen Klimaschutzszenarien. Die UBA-Szenarien + weitere Annahmen des DIW zur Entwicklung bis 2030 werden in grau dargestellt. Hellgrau stellt die Spannbreite für verschiedene Unterszenarien dar. Zusätzlich ist ein Szenario für den WWF dargestellt (Einhaltung des globalen Zwei-Grad-Ziels).

- Schlussfolgerung des DIW: "Alle geplanten neuen bzw. zu erweiternden Tagebaue sind somit nicht erforderlich." (Nochten 2, Welzow Süd Teilfeld II, Jänschwalde Nord, Bagenz-Ost sowie Spremberg Ost)
- Laufendes Forschungsprojekt des UBA untersucht die regionalen energiewirtschaftlichen und ökonomischen Folgen von Klimaschutzszenarien

Quellen: Berechnungen des DIW (2017) auf Basis von WWF (2017) und UBA (2017)

Vielen Dank für Ihre Aufmerksamkeit

